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Abstract

Two-sample location-scale refers to a situation in which a pair of random variables are linearly related
to a base random variable that has mean 0 and variance 1. Using a formulation that leverages the location-
scale structure, a semiparametric estimator of the vertical quantile comparison function is proposed and
its large-sample properties are derived. Its efficacy relative to that of a nonparametric estimator as well as
its robustness to departures from location-scale models is investigated through numerical studies.
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1 Introduction

Suppose that there are two distribution functions F1 and F2 induced by X1 and X2 respectively, a pair
of independent random variables. Let p ∈ (0, 1). Associated with Fi, i = 1, 2, are Qi(p), where Qi(p) =
inf{x : Fi(x) ≥ p} are the quantile functions that yield values, called the p-quantiles, on the real line. The
vertical quantile comparison (VQC) function, Υ(p), maps the interval (0, 1) back to itself through Υ : p 7→
(F2 ◦Q1)(p) = F2(Q1(p)). As p runs over the interval (0, 1), the graph of the VQC function traces a curve that
may broadly overlap the 45-degree line, or may traffic in the upper or lower regions away from the 45-degree
line, or may intersect it at one or several points. The 45-degree line is the benchmark signaling the equality
of F1 and F2.

The vertical quantile function has broad applicability in many areas. For instance, in clinical trials, if F1

and F2 are the distribution functions of the time to an outcome for control and treatment groups respectively,
then Υ(0.5) represents the probability that a treatment group individual has a shorter survival time than the
median for the control group. A low value indicates that individuals from the treatment group have a higher
likelihood of survival beyond the control median, suggesting that the treatment is effective and may be pursued.
A high value would not provide sufficient confidence in the treatment, calling for its termination. In this way,
the value of the VQC function at various designated p quantiles (signposts) offers a road map of treatment
efficacy. The measure provides a robust alternative to hazard ratios with lesser computational overheads. The
same idea pervades in quality control and reliability. The VQC function helps quantify the frequency with
which a new product outperforms an existing one at some of its chosen p quantiles. In economics, the VQC
function is used to compare incomes between groups, offering interpretable summaries of relative advantage at
specific quantiles (Chernozhukov, Fernandez-Val, and Melly, 2013). For censored data, Li, Tiwari, and Wells
(1996) proposed a nonparametric estimator for Υ(p), which employed the Kaplan–Meier (KM) estimator of
F2 and the quantile function estimator associated with F1. The estimator was reported to perform well in
numerical studies.

Suppose that Xi = µi + σiWi, i = 1, 2, where Wi are independent copies of W having the distribution
function F with mean 0 and variance 1. We refer to W as having the base distribution F . For example, W
may be standard normal. The parameters µi and σi are the means and standard deviations of Xi. Note that

Fi(x) = F

(
x− µi

σi

)
, i = 1, 2. (1.1)

It is said that F1 and F2 belong to a location-scale (LS) family of distributions with base distribution function
F . LS models are widely used in medical research, where outcome distributions are paramount for eval-
uating treatment efficacy and clinical decision-making. More specifically, differences in disease progression
often appears as a shift or scale of a health related outcome distribution such as blood pressure, survival
time, biomarker levels, among others. LS models are essential in medical studies since they naturally handle
heterogeneity between patient groups. In survival analysis, accelerated failure time models assume that the
log-survival times follow an LS family of distributions such as the log-normal or log-logistic, allowing clinicians
to interpret treatment effects as multiplicative changes in median survival (Kalbfleischa and Prentice, 2002).

In this paper, we are concerned with estimation of the VQC functions in two-sample LS families. Note
that the distribution of (Xi − µi)/σi, i = 1, 2, is F , so, a basic rationale is that the LS framework admits the
pooling of standardized values from both samples, inflating the effective sample size that one expects would
improve the efficiency of the estimate. The proposed estimator, as will be seen below, is semiparametric.

The quantile functions associated with Fi are linearly related to the quantile function associated with F :

Qi(p) = µi + σiQ(p), i = 1, 2. (1.2)

From Eq. (1.1) and Eq. (1.2), the VQC function under the two-sample LS framework is

Υ(p) = F

(
µ1 − µ2

σ2
+
σ1
σ2
Q(p)

)
, (1.3)

a formulation that leverages the LS structure to express Υ(p) in terms of the base distribution and its quantile
function. Whereas the nonparametric estimator of Υ(p) uses the separate samples for the distribution and
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quantile functions estimation, the proposed approach exploits Eq. (1.3) and uses the combined sample for
estimating F and Q embedded in the LS-adjusted formula for Υ(p). The apparent advantage that an inflated
sample gives may come with a price as we now need estimates of the finite dimensional parameters µi and σi.
This paper investigates whether the trade off leads to efficiency gains while preserving some of the flexibility
of the nonparametric approach.

In proposing to exploit Eq. (1.3), we first consider the case of no censoring. Later we show how to extend
the approach to the censored case. Let Xi1, . . . , Xi,ni

be a random sample from Fi, i = 1, 2. Estimate

θi = (µi, σi)
⊤ and form the estimated standardized values Ŵij = (Xij − µ̂i)/σ̂i, j = 1, . . . , ni, i = 1, 2, where

µ̂i and σ̂i are the sample means and standard deviations respectively. Let F̂θ̂ be the empirical distribution

function of the ordered Ŵij and let Q̂θ̂ be the empirical quantile function, see Section 2 for the notations. Our
estimator of Υ(p) is

Υ̂(p) = F̂θ̂

(
µ̂1 − µ̂2

σ̂2
+
σ̂1
σ̂2
Q̂θ̂(p)

)
. (1.4)

When there is right censoring, Eq. (1.4) still applies with F̂θ̂ taken as the Kaplan–Meier (KM) estimator
of the pooled estimated standardized values, and µ̂i and σ̂i are the estimates obtained via Stute’s (1995) KM
integrals. A technical justification that pooling the samples in the presence of censoring does not lead to
internal conflicts will be offered when we address the censored case in Section 2.3.

The proposed estimator is indexed by estimated (finite dimensional) parameters. A technical challenge
is to replace the estimated parameters by their true ones, for which we exploit an empirical processes ap-
proach employed by Stute and Zhu (2005). The decomposition of the (centered) estimator’s large-sample
representation as a sum of centered processes indexed by “known parameters” – for which large-sample repre-
sentations can be readily given from available results – and the centered finite-dimensional quantities µ̂i − µi

and σ̂i − σi are derived. Due to the presence of estimated parameters (the plug-ins), the proposed estimator
has an intractable asymptotic variance covariance function. The bootstrap is deployed to construct pointwise
confidence intervals for the VQC function using the proposed estimator.

The paper is organized as follows. Section 2.1 details a generic large-sample analysis. The cases of no-
censoring and censoring are treated in Sections 2.2 and 2.3. Section 3 contains numerical results. Some
concluding discussion is given in Section 4. Certain technical derivations can be found in the Appendix.

2 The estimator and its large-sample study

We first derive a generic large sample representation for the proposed estimator. In the subsections
that follow, we fine-tune the representations for the cases of no-censoring and censoring.

2.1 Generic large-sample representation

For i = 1, 2, let Xij , j = 1, . . . , ni, be independent and identically distributed (iid) random variables
with distribution function Fi. The random variable Wij = (Xij − µi)/σi, is notional (theoretical construct;
unobservable), hence we must use the estimated Wij obtained by substituting estimates µ̂i and σ̂i for the

unknown parameters. With this in mind, let θ = (θ⊤
1 ,θ

⊤
2 )

⊤, where θi = (µi, σi)
⊤, i = 1, 2. Let γ = (γ⊤

1 ,γ
⊤
2 )

⊤

be in a neighborhood of θ, where γi = (µ′
i, σ

′
i)

⊤, i = 1, 2. Let W
γi
ij = (Xij − µ′

i)/σ
′
i and let F

γi

Wi
be the

distribution of W
γi
i . Note that W θi

ij ≡ Wij , j = 1, . . . , ni, are iid with common distribution F . Let Wγ be a

random variable from the collection W
γi
ij . To determine Fγ , its distribution function, let ξ, independent of X1

and X2, be Bernoulli with success probability ρ, indicating membership in the first population. Then

Wγ =

(
X1 − µ′

1

σ′
1

)ξ (
X2 − µ′

2

σ′
2

)1−ξ

. (2.1)

Note that when µ′
i = µi and σ

′
i = σi, Wγ ≡Wθ :=W has distribution function F . We adapt the conditions of

Stute and Zhu (2005) to impose the following: (C1) For some ζ > 2, E
(
|Xi|ζ

)
<∞; (C2) For all γ satisfying
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∥γ − θ∥ = O(n−1/2), the random variables W
γi
i have continuously differentiable densities, and both the

densities and their derivatives are bounded and bounded away from 0 over the support, uniformly in γi; (C3)
The distribution functions ofW

γi
i are continuous in γi at γi = θi, meaning that γi → θi =⇒ F

γi

Wi
(·) → F (·).

Lemma 1. Let [a, b] ⊂ R1. Then, supω∈[a,b] |Fγ(w)− F (w)| = O(n−1/2).

Let f be the density of F . For any w ∈ R1, let w∗
i be between w and σ−1

i {(µ′
i − µi) + σ′

iw}. Then .

Fγ(w) := P(Wγ ≤ w) = P
(
X1 − µ′

1

σ′
1

≤ w

)
ρ+ P

(
X2 − µ′

2

σ′
2

≤ w

)
(1− ρ)

= P
(
W1 ≤ µ′

1 − µ1

σ1
+
σ′
1

σ1
w

)
ρ+ P

(
W2 ≤ µ′

2 − µ2

σ2
+
σ′
2

σ2
w

)
(1− ρ)

= F

(
µ′
1 − µ1

σ1
+
σ′
1

σ1
w

)
ρ+ F

(
µ′
2 − µ2

σ2
+
σ′
2

σ2
w

)
(1− ρ) (2.2)

= F (w) +
ρ

σ1
{(µ′

1 − µ1) + (σ′
1 − σ1)w} f(w∗

1)

+
1− ρ

σ2
{(µ′

2 − µ2) + (σ′
2 − σ2)w} f(w∗

2). (2.3)

By condition C2, uniformly for w ∈ [a, b], |w∗
i −w| = O(n−1/2). In turn, |w∗

1 −w∗
2 | = O(n−1/2). By the mean

value theorem and condition C2, |f(w∗
1)− f(w∗

2)| = O(n−1/2). Eq. (2.3) completes the proof.
For α ∈ (0, 1) and β ∈ (0, 1), and p ∈ [α, β], Qγ(p) := inf{w : Fγ(w) ≥ p}. Note that Qθ(p) ≡ Q(p). Let

ci be between Q(p) and σ−1
i {(µ′

i − µi) + σ′
iQγ(p)}. Let d1 = ρf(c1)/(ρf(c1) + (1− ρ)f(c2)) = 1− d2.

Lemma 2. Suppose for all p ∈ [α, β], Qγ(p) ∈ [a, b] uniformly over γ, where [a, b] is a finite interval. Then

Qγ(p)−Q(p) = −d1
σ1

(µ′
1 − µ1)−

d2
σ2

(µ′
2 − µ2)−Qγ(p)

d1
σ1

(σ′
1 − σ1)−Qγ(p)

d2
σ2

(σ′
2 − σ2). (2.4)

Proof Since Fγ(Qγ(p)) = p, apply Eq. (2.2) to obtain

ρF

(
µ′
1 − µ1

σ1
+
σ′
1

σ1
Qγ(p)

)
+ (1− ρ)F

(
µ′
2 − µ2

σ2
+
σ′
2

σ2
Qγ(p)

)
= p.

Applying the mean value theorem, we must have

ρ

[
F (Q(p)) +

(
µ′
1 − µ1

σ1
+
σ′
1

σ1
Qγ(p)−Q(p)

)
f(c1)

]
+(1− ρ)

[
F (Q(p)) +

(
µ′
2 − µ2

σ2
+
σ′
2

σ2
Qγ(p)−Q(p)

)
f(c2)

]
= p.

Then, after some elementary transpositions, it is easy to show that

(ρf(c1) + (1− ρ)f(c2)) (Qγ(p)−Q(p)) = −ρf(c1)
µ′
1 − µ1

σ1
− (1− ρ)f(c2)

µ′
2 − µ2

σ2

−Qγ(p)

(
ρf(c1)

σ′
1 − σ1
σ1

+ (1− ρ)f(c2)
σ′
2 − σ2
σ2

)
.

Eq. (2.4) follows. The proof of the lemma is completed.

Remark 1 For p ∈ [α, β], let Aγ(p) = {w : Fγ(w) ≥ p}. Note that inf Aγ(p) = Qγ(p). By condition C2 and
Eq. (2.3), |Fγ(w)− F (w)| ≤ K∥θ − γ∥, where K is a generic constant. Since ∥γ − θ∥ = O(n−1/2), the upper
bound K∥θ − γ∥ can be chosen so that p±K∥γ − θ∥ ∈ [α, β]. If w ∈ Aγ(p), then F (w) = Fγ(w) + (F (w)−
Fγ(w)) ≥ p−K∥θ−γ∥. Hence Aγ(p) ⊂ Aθ(p−K∥θ−γ∥). It follows that Q(p−K∥θ−γ∥) ≤ Qγ(p). On the
other hand, if w ∈ Aθ(p+K∥θ−γ∥), then F (w) ≥ p+K∥θ−γ∥ and hence that Fγ(w) ≥ F (w)−K∥γ−θ∥ ≥ p.
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Hence Aθ(p +K∥θ − γ∥) ⊂ Aγ(p). It follows that Q(p −K∥θ − γ∥) ≤ Qγ(p) ≤ Q(p +K∥θ − γ∥). By the
mean value theorem, uniformly for p ∈ [α, β], |Qγ(p)−Q(p)| ≤ K∥θ − γ∥ = O(n−1/2).

Let F̂γ be the notional EDF of {Wγi
ij , j = 1, . . . , ni, i = 1, 2}. As already mentioned, when γ = θ, the

random variables W θi
ij ≡Wij , j = 1, . . . , ni, i = 1, 2, are iid with distribution function F . Combine all Wij and

let F̂θ ≡ F̂ be the (notional) EDF of the combined sample. We are concerned with the special case γ = θ̂,

where θ̂ = (θ̂
⊤
1 , θ̂

⊤
2 )

⊤, θ̂1 = (µ̂1, σ̂1)
⊤ and θ̂2 = (µ̂2, σ̂2)

⊤, and µ̂i and σ̂i are the mean and standard deviation
estimators. Combine all Ŵij = (Xij − µ̂i)/σ̂i and let F̂θ̂ be the (computable) EDF of the combined sample.

Set Ĉθ̂(p) =
(
µ̂1 − µ̂2 + σ̂1Q̂θ̂(p)

)
/σ̂2 and C(p) = (µ1 − µ2 + σ1Q(p)) /σ2. From Eq. (1.3), the VQC

function is Υ(p) = F ◦ C(p) = F (C(p)). From Eq. (1.4), the proposed estimator is F̂θ̂(Ĉθ̂(p)). The estimator

Υ̂ is a composition of F̂θ̂, an estimator of F , and Ĉθ̂(p), which shifts and scales an estimator of Q using the

mean and standard deviation estimators. Using the n1/2 consistency of µ̂i and σ̂i, it can be shown that

B̂(p) := Ĉθ̂(p)− C(p) =
σ1
σ2

(Q̂θ̂(p)−Q(p)) +
1

σ2
{(µ̂1 − µ1) + (σ̂1 − σ1)Q(p)− (µ̂2 − µ2)}

− 1

σ2
2

{(µ1 − µ2) + σ1Q(p)} (σ̂2 − σ2) + oP(n
−1/2). (2.5)

In propositions 1 and 2 we derive large sample representations for Â(s) := F̂θ̂(s)−F (s) and Q̂θ̂(p)−Q(p).

Proposition 1. Under conditions C1–C3, Â(s) := F̂θ̂(s)− F (s) admits the large sample representation

Â(s) = F̂ (s)− F (s) +
ρ

σ1
f(s) {(µ̂1 − µ1) + s(σ̂1 − σ1)}

+
1− ρ

σ2
f(s) {(µ̂2 − µ2) + s(σ̂2 − σ2)}+ oP(n

−1/2). (2.6)

Proof We write F̂θ̂(s) = F̂θ̂(s)−Fθ̂(s)− F̂ (s)+F (s)+Fθ̂(s)+ F̂ (s)−F (s). Apply Eq. (A.1) in Lemma 3 to

obtain F̂θ̂(s)−F (s) = F̂ (s)−F (s)+Fθ̂(s)−F (s)+ oP(n−1/2). Let s∗i be between s and σ−1
i {(µ̂i−µi)+ σ̂is}.

Applying Eq. (2.3) to Fθ̂(s)− F (s), we have, modulus a remainder term oP(n
−1/2),

Â(s) = F̂ (s)− F (s) +
ρ

σ1
{(µ̂1 − µ1) + s (σ̂1 − σ1)} f(s∗1) +

1− ρ

σ2
{(µ̂2 − µ2) + s (σ̂2 − σ2)} f(s∗2).

Since s∗i
P−→s and since f is continuous, Eq. (2.6) follows immediately.

We assume (C4): For all p ∈ [α, β], Qγ(p) ∈ [a, b] uniformly over γ, where [a, b] is a finite interval.

Proposition 2. Under conditions C1–C4, Q̂θ̂(p)−Q(p) admits the large-sample representation

Q̂θ̂(p)−Q(p) = Q̂(p)−Q(p)− ρ

σ1
{(µ̂1 − µ1) +Q(p) (σ̂1 − σ1)}

− (1− ρ)

σ2
{(µ̂2 − µ2) +Q(p) (σ̂2 − σ2)}+ oP(n

−1/2). (2.7)

Proof Substitute γ = θ̂ in Eq. (2.4) to obtain

Qθ̂(p)−Q(p) = −d1
σ1

(µ̂1 − µ1)−
d2
σ2

(µ̂2 − µ2)−Qθ̂(p)
d1
σ1

(σ̂1 − σ1)−Qθ̂(p)
d2
σ2

(σ̂2 − σ2), (2.8)

where d1 = ρf(c1)/(ρf(c1) + (1− ρ)f(c2)) = 1− d2, and ci are between Q(p) and σ−1
i {(µ̂i − µi) + σ̂iQθ̂(p)}.

The consistency of µ̂i and σ̂i along with conditions C1–C4 implies through Eq. (2.8) that Qθ̂(p)
P−→Q(p) and

that ci
P−→Q(p), i = 1, 2. In turn, it follows that d1

P−→ ρ and d2
P−→ 1− ρ. From Eq. (2.8) it now follows that

Qθ̂(p)−Q(p) = − ρ

σ1
{(µ̂1 − µ1) +Q(p) (σ̂1 − σ1)}

− (1− ρ)

σ2
{(µ̂2 − µ2) +Q(p) (σ̂2 − σ2)}+ oP(n

−1/2). (2.9)
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Applying a decomposition analogous to that used in the proof of Proposition 1, and then applying Lemma 4,

Q̂θ̂(p)−Q(p) = Q̂(p)−Q(p) +Qθ̂(p)−Q(p) + Q̂θ̂(p)−Qθ̂(p)− Q̂(p) +Q(p)

= Q̂(p)−Q(p) +Qθ̂(p)−Q(p) + oP(n
−1/2).

Then apply Eq. (2.9) to obtain Eq. (2.7).

Combining Eqs. (2.5) and (2.7), we obtain

B̂(p) =
1

σ2
{(µ̂1 − µ1) + (σ̂1 − σ1)Q(p)− (µ̂2 − µ2)}

− 1

σ2
2

{(µ1 − µ2) + σ1Q(p)} (σ̂2 − σ2) +
σ1
σ2

(Q̂θ̂(p)−Q(p)) + oP(n
−1/2)

=
1

σ2
{(µ̂1 − µ1) + (σ̂1 − σ1)Q(p)− (µ̂2 − µ2)} −

1

σ2
2

{(µ1 − µ2) + σ1Q(p)} (σ̂2 − σ2)

+
σ1
σ2

(
Q̂(p)−Q(p)

)
− ρ

σ2
{(µ̂1 − µ1) +Q(p) (σ̂1 − σ1)}

− σ1(1− ρ)

σ2
2

{(µ̂2 − µ2) +Q(p) (σ̂2 − σ2)}+ oP(n
−1/2). (2.10)

Combining the coefficients for the various centered quantities in Eq. (2.10), we obtain

B̂(p) =
σ1
σ2

(
Q̂(p)−Q(p)

)
+

1− ρ

σ2
(µ̂1 − µ1)−

1

σ2

{
1 +

σ1(1− ρ)

σ2

}
(µ̂2 − µ2)

+
1− ρ

σ2
Q(p)(σ̂1 − σ1)−

1

σ2
2

[(µ1 − µ2) + σ1 (2− ρ)Q(p)] (σ̂2 − σ2) + oP(n
−1/2). (2.11)

Let D[a, b] be the class of càdlàg functions on [a, b] equipped with the supremum norm. Let T̂ (·) =(
F̂θ̂(·), Ĉ(·)

)⊤
be the sequence of random elements and T (·) = (F (·), C(·))⊤ be the fixed point, both in

D[a, b]×D[α, β]. Suppose that n1/2(T̂ −T )
D−→ W as n→ ∞ on D[a, b]×D[α, β], where W = (W1,W2)

⊤ is
a random element of D[a, b]×D[α, β]. Let C[a, b] be the subspace of continuous functions in D[a, b]. Define

D̂(p) = n1/2
(
F̂ (C(p))− F (C(p))

)
+
σ1
σ2
f(C(p))n1/2

(
Q̂(p)−Q(p)

)
+

(
ρ

σ1
+

1− ρ

σ2

)
f(C(p))

{
n1/2(µ̂1 − µ1)−

σ1
σ2

n1/2(µ̂2 − µ2)

}
+

1

σ2

(
µ1 − µ2

σ1
ρ+Q(p)

)
f(C(p))

{
n1/2(σ̂1 − σ1)−

σ1
σ2

n1/2(σ̂2 − σ2)

}
. (2.12)

Large-sample representations for n1/2
(
F̂ (C(·))− F (C(·))

)
, n1/2

(
Q̂(·)−Q(·)

)
, and for n1/2(µ̂i−µi), i = 1, 2,

and n1/2(σ̂i − σi), i = 1, 2, found in Eq. (2.12) will be given in Appendixes A.2 and A.3.

Theorem 1. Under conditions C1–C4, n1/2(Υ̂−Υ) is asymptotically equivalent to D̂ given by Eq. (2.12).

Proof Define φ : D[a, b]×D[α, β] → D[a, b] by φ(η, ψ) := η ◦ ψ ≡ η(ψ) for every (η, ψ) ∈ D[a, b]×D[α, β].
Note that Υ(·) = φ(T (·)⊤) and Υ̂(·) = φ(T̂ (·)⊤). Therefore,

n1/2
{
Υ̂(·)−Υ(·)

}
= n1/2

{
φ
(
T̂ (·)⊤

)
− φ

(
T (·)⊤

)}
By Proposition II.8.8 of Andersen, Borgan, Gill, and Keiding (1993), φ is compactly differentiable tangentially
to C[a, b]×D[α, β] at T with derivative dφ(T⊤) · (h, k). The operator dφ(T⊤) acting on (h, k) produces

dφ(T⊤) · (h, k) ≡ dφ(F,C) · (h, k) = h ◦ C + F ′ ◦ C · k, (2.13)
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where F ′ is the ordinary continuous derivative of F and the last “·” is ordinary multiplication. Theorem II.8.1
of Andersen et al. (1993), the functional delta method, can be now applied to deduce that

n1/2
(
Υ̂(·)−Υ(·)

)
≡ n1/2

(
φ(T̂

⊤
)− φ(T⊤)

)
and dφ(T⊤) · n1/2

(
T̂

⊤
− T⊤

)
are asymptotically equivalent. Since n1/2

(
T̂ − T

)
is asymptotically equivalent to the vector n1/2

(
Â, B̂

)⊤
,

we may apply Eq. (2.13) and evaluate dφ(T⊤) = dφ(F,C) at h = n1/2Â(·) and k = n1/2B̂(·), to obtain

n1/2
(
Υ̂(·)−Υ(·)

)
= n1/2Â (C(·)) + f (C(·))× n1/2B̂(·) + oP(1). (2.14)

Plugging in the representations given by Eq. (2.6) and Eq. (2.11) into Eq. (2.14), it can be checked that the
first two terms of Eq. (2.12) is immediate. It can be checked that n1/2(µ̂1 − µ1) is scaled by the factor
{ρ/σ1 + (1− ρ)/σ2}f(C(p)); that n1/2(µ̂2 − µ2) is scaled by the factor

1

σ2

{
(1− ρ)− (1 + (1− ρ)

σ1
σ2

}
f(C(p)) = −σ1

σ2

(
ρ

σ1
+

1− ρ

σ2

)
f(C(p)).

Recall that C(p) = (µ1 − µ2 + σ1Q(p))/σ2. The centered n1/2(σ̂1 − σ1) is scaled by the factor{
ρ

σ1
C(p) +

1− ρ

σ2
Q(p)

}
f(C(p)) =

{
µ1 − µ2

σ1σ2
ρ+

ρQ(p)

σ2
+

1− ρ

σ2
Q(p)

}
f(C(p))

=
1

σ2

{
µ1 − µ2

σ1
ρ+Q(p)

}
f(C(p)).

Finally, the centered n1/2(σ̂2 − σ2) is scaled by the factor{
1− ρ

σ2
C(p)− 1

σ2
2

[(µ1 − µ2) + {σ1 + (1− ρ)σ1}Q(p)]

}
f(C(p))

=

{
1− ρ

σ2
2

(µ1 − µ2) +
σ1
σ2
2

Q(p)(1− ρ)− 1

σ2
2

[(µ1 − µ2) + {σ1 + (1− ρ)σ1}Q(p)]

}
f(C(p))

= −σ1
σ2
2

{
µ1 − µ2

σ1
ρ+Q(p)

}
f(C(p)).

It follows that n1/2
(
Υ̂(p)−Υ(p)

)
is asymptotically equivalent to D̂(p) given by Eq. (2.12).

From the proof of Theorem 1, we can deduce that the weak convergence of n1/2
(
Υ̂(·)−Υ(·)

)
in D[α, β]

to a zero-mean Gaussian process follows from the weak convergence of n1/2
(
T̂ (·)− T (·)

)
and the functional

delta method. In the next two subsections we obtain final expressions for D̂(p).

2.2 Large-sample representation for the uncensored case

Let n1/n → κ as n1 → ∞ and n2 → ∞ and let κ1 = κ, κ2 = 1− κ. In Appendix A.2 we show that

D̂(p) = n−1/2
2∑

i=1

ni∑
j=1

{1{Wij≤C(p)} − F (C(p))} − σ1
σ2
f(C(p))n−1/2

2∑
i=1

ni∑
j=1

1{Wij≤Q(p)} − p

f(Q(p))

+ σ1

(
ρ

σ1
+

1− ρ

σ2

)
f(C(p))

κ−1/2

n−1/2
1

n1∑
j=1

W1j

− (1− κ)−1/2

n−1/2
2

n2∑
j=1

W2j


+

1

2

{
(µ1 − µ2)ρ+ σ1Q(p)

σ2

}
f(C(p))

×

κ−1/2

n−1/2
1

n1∑
j=1

(W 2
1j − 1)

− (1− κ)−1/2

n−1/2
2

n2∑
j=1

(W 2
2j − 1)

+ oP(1). (2.15)
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The first two terms of D̂(p) result when µi and σi are known. The additional terms are the price of
estimating the unknown µi and σi. Due to the lengthy expression for D̂(p) above, the limiting covariance
function of the Gaussian process would have a complicated form. In Section 3, we use bootstrap to approximate
the variance of Υ̂(p), using which we compute pointwise confidence intervals for the VQC function.

2.3 Large-sample representation for the censored case

For each i = 1, 2, let Cij , j = 1, . . . , ni be a random sample from Gi, where the Gi are the distribution
functions of the censoring variables. The observed data consists of {(Zij , δij), j = 1, . . . , ni, i = 1, 2}, where
Zij = min(Xij , Cij) and δij = I(Xij ≤ Cij). So that we handle a single (pooled array), let Ŵ = (Z − µ̂)/σ̂,
where µ̂ may be µ̂1 or µ̂2 and likewise for σ̂.

Standardizing the observed minimum artificially shifts and scales the censored observations. We show that
pooling standardized values continues to provide correct estimates of F . Let Λθ̂ be the associated cumulative

hazard function (CHF). Let G̃i be the distribution functions of (Ci − µ̂i)/σ̂i. Define

Dt(α, β) =

∫ t

−∞
dα(s)/β(s).

It is standard to show under the LS framework that HŴ ,1(t) = P (Ŵ ≤ t, δ = 1) and HŴ (t) = P (Ŵ ≤ t) are

HŴ ,1(t) = ρDt

(
Fθ̂, 1/(1− G̃1)

)
+ (1− ρ)Dt

(
Fθ̂, 1/(1− G̃2)

)
;

dHŴ ,1(t) =
(
ρ(1− G̃1(t)) + (1− ρ)(1− G̃2(t))

)
dFθ̂(t); (2.16)

1−HŴ (t) = (1− Fθ̂(t))
(
ρ(1− G̃1(t)) + (1− ρ)(1− G̃2(t))

)
. (2.17)

Performing the operation Dt(HŴ ,1, 1−HŴ ), it is seen from Eq. (2.16) and Eq. (2.17) that

Dt(HŴ ,1, 1−HŴ ) =

∫ t

−∞

1

1−HŴ (s)
dHŴ ,1(s) =

∫ t

−∞

dFθ̂(s)

1− Fθ̂(s)
≡ Λθ̂,

hence correctly estimating the CHF and, in turn, the distribution function Fθ̂. In Appendix A.3 we show that

D̂(p) = S(C(p))n−1/2
n∑

j=1

I
(1)
j (C(p))− σ1

σ2

f(C(p))

f(Q(p))
(1− p)n−1/2

n∑
j=1

I
(1)
j (Q(p))

+

[
ρ

σ1
+

1− ρ

σ2
− µ1

σ1
.
1

σ2

{
µ1 − µ2

σ1
ρ+Q(p)

}]
f(C(p))κ−1/2

n−1/2
1

n1∑
j=1

I
(2)
1j


− σ1
σ2

[
ρ

σ1
+

1− ρ

σ2
− µ2

σ2
.
1

σ2

{
µ1 − µ2

σ1
ρ+Q(p)

}]
f(C(p)) (1− κ)−1/2

n−1/2
2

n2∑
j=1

I
(2)
2j


+

1

2σ1σ2

{
µ1 − µ2

σ1
ρ+Q(p)

}
f(C(p))κ−1/2

n−1/2
1

n1∑
j=1

I
(3)
1j


− σ1

2σ3
2

{
µ1 − µ2

σ1
ρ+Q(p)

}
f(C(p)) (1− κ)−1/2

n−1/2
2

n2∑
j=1

I
(3)
2j

+ oP(1). (2.18)

The influence functions I
(1)
l (·), l = 1, . . . , n, I

(2)
ij , j = 1, . . . , ni, and I

(3)
ij , j = 1, . . . , ni are given by Eq. (A.13),

Eq. (A.18) and Eq. (A.20) respectively.
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3 Simulation studies

3.1 Numerical results for the uncensored case

We carried out comparison studies between the proposed and Li et al. (1996) estimators. The comparison
was based on the mean integrated squared error (MISE), where the integrating variable p was taken over a fine
grid of values in the interval (0.05, 0.95). The integrand is the square of the difference of the estimator from
the true VQC function. The percent improvement of the proposed estimator relative to the nonparametric
estimator was computed.

The failure times for both samples were generated from distributions belonging to some location-scale
family. Formally, each random variable is defined as Xi = µi + σiW, i = 1, 2, where W follows some chosen
baseline distribution such as standard normal, standardized logistic, or a standardized t distribution. When

W ≡ Z is standard normal, the VQC function is Υ(p) = Φ

(
µ1−µ2

σ2
+ σ1

σ2
Q(p)

)
, where Φ(.) and Q(.) are

the distribution and quantile functions of the standard normal distribution respectively. When W is the

standardized logistic, then W =
√

3
πV , where V is standard logistic. The VQC function in this case is

Υ(p) = FV

(
µ1 − µ2

σ2

√
π

3
+
σ1
σ2
QV (p)

)
,

where FV (.) and QV (.), are the distribution and quantile functions respectively of the standard logistic dis-

tribution. When W is the standardized t, then W =
√

ν−2
ν tν , where tν is the student’s distribution with ν

degrees of freedom. The VQC function in this case is

Υ(p) = Fν

(
µ1 − µ2

σ2

√
ν

ν − 2
+
σ1
σ2
Qν(p)

)
,

where Fν(.) and Qν(.) are the distribution and quantile functions respectively of tν .
The simulations were carried out for sample sizes n1 = n2 = 25, 50, 75 and 100. The MISE was based on

5,000 replications. The results are reported in Table 1. In all cases, the proposed estimator offered a relative
reduction between 6% and 25% over the nonparametric estimator.

Table 1: Percent reduction in MISE of the proposed estimator relative to the Li et al. (1996) estimator

Baseline distribution n1 = n2

θ = (µ1, σ1, µ2, σ2)
⊤

(−0.5, 1, 3, 1.5)⊤ (5, 1, 2, 2)⊤ (1, 3.5, 0, 3)⊤

Gaussian

25 13.76 12.25 20.98
50 15.00 13.13 24.34
75 15.56 13.41 24.47
100 16.45 14.47 24.81

Logistic

25 19.84 10.01 6.99
50 20.23 10.05 9.32
75 18.91 12.97 6.07
100 21.52 13.26 7.86

ν = 5 ν = 9 ν = 13

tν

25 15.98 8.49 13.00
50 12.13 11.86 15.30
75 11.21 11.93 15.32
100 13.15 10.99 15.55

A study of the proposed estimator’s performance was conducted when the location and scale assumption
was violated. Let W indicate a generic base distribution such as standard normal, a standardized logistic, or a
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standardized tν , where ν is the degrees of freedom. Note that W has mean 0 and variance 1. Let W1,W2 and
W3 be independent random variables each having the same distribution asW . We considered X1 = µ1+σ1W1

and X2 = µ2 + σ2Y , where Y = δ|W2| + (1 − δ2)1/2W3. Here, the second sample is drawn from a skewed
distribution that matches the first sample distribution only when δ, the skewness parameter, is 0. Note that
F2(t) = P (X2 ≤ t) = FY ((t−µ2)/σ2). Let Q1(p) be the quantile function ofX1. Then Q1(p) = µ1+σ1QW1

(p).
After some calculations, the true VQC function is Υ(p) = F2(Q1(p)) = FY ((Q1(p)− µ2)/σ2), where

FY (y) =

∫ ∞

−∞
FW

(
y − δ|x|√
1− δ2

)
fW (x)dx, y ∈ R1. (3.1)

When δ is 0, X1 and X2 belong to an LS family. Substituting δ = 0 on the right hand side of Eq. (3.1),
FY (y) = FW (y). In particular, when δ = 0, Υ(p) = FW (Q1(p)) = FW (µ1 + σ1QW (p)). When δ is away from
0, the two samples are not from an LS family. We, however, continue to pool both samples and compute the
proposed estimator, which continues to outperform the nonparametric estimator significantly. The percent
reduction in MISE of the proposed estimator relative to the nonparametric estimator is shown in Figure 1.

(a) Normal θ = (0, 1, 0, 1)⊤ (b) t4 θ = (−0.5, 1, 3, 1.5)⊤ (c) Logistic θ = (−0.5, 1, 3, 1.5)⊤

Figure 1: Robustness study for some distributions

The empirical coverage probability (ECP) of the 95% pointwise confidence intervals for Υ(p) is the propor-
tion of 1,000 intervals that include Υ(p). They were computed from the asymptotic normality of Υ̂(p). The
standard error of Υ̂(p) was estimated by B = 1, 000 bootstrap samples. The ECPs are reported in Table 2.

Table 2: Empirical coverage probability of 95% confidence intervals for Υ(p) for θ = (0, 1, 0, 1)⊤

Baseline distribution n1 = n2

p
.35 .45 .50 .65 .75

Gaussian

25 .920 .928 .932 .930 .923
50 .936 .947 .944 .942 .938
75 .951 .956 .959 .937 .947
100 .954 .954 .942 .948 .940

Logistic

25 .936 .930 .939 .931 .920
50 .938 .940 .944 .938 .938
75 .944 .948 .944 .940 .945
100 .954 .945 .948 .944 .950
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3.2 Numerical results for the censored case

The three scenarios that we considered for the uncensored case were replicated here. Failure times were
either normal or logistic or tν . The censoring was taken as Ci = (µi + k1) + (σi + k2)Wi, where Wi were
independent standard normal, standardized logistic, or standardized tν . WhenWi ≡ Zi were standard normal,
k1 = 3 and k2 = 3. When Wi were standardized logistic, k1 = 2 and k2 = 2. When Wi were standardized tν ,
k1 = 3 and k2 = 1. The percentage reduction in MISE relative to the nonparametric estimator are reported
in Table 3. The proposed estimator gave improved estimates for mild to moderate censoring rates.

Table 3: Percentage reduction in MISE of the proposed estimator relative to the Li et al. (1996) estimator

Baseline distribution n1 = n2

θ = (µ1, σ1, µ2, σ2)
⊤

(−1, 1, 2, 2)⊤ (0, 1, 0, 1)⊤ (−2, 9, 5, 3)⊤

Gaussian

25 53.71 88.87 36.50
50 48.83 82.96 38.29
75 41.51 76.44 35.96
100 31.69 70.29 33.22

Censoring Rate (10%, 21%) (10%, 10%) (41%, 28%)

Logistic

25 51.01 74.75 50.90
50 46.02 58.46 48.94
75 40.93 42.93 46.92
100 35.86 31.66 48.13

Censoring Rate (18%, 30%) (18%, 18%) (44%, 35%)

ν = 9 ν = 13 ν = 17

tν

25 49.41 87.23 32.92
50 48.18 80.13 23.68
75 46.30 73.34 15.97
100 41.56 64.72 18.49

Censoring Rate (20%, 28%) (19%, 19%) (44%, 35%)

For the robustness study, similar to the uncensored case, we consideredX1 = µ1+σ1W1 andX2 = µ2+σ2Y ,
where Y = δ|W2|+ (1− δ2)1/2W3. In each scenario, the censoring distributions were like the ones specified in
the first study of this subsection, see above. The results are reported in Figure 2. As in the uncensored case,
here too the proposed estimator is robust to departures from the LS assumption.

(a) Normal θ = (0, 1, 0, 1)⊤ (b) t13 θ = (0, 1, 0, 1)⊤ (c) Logistic θ = (0, 1, 0, 1)⊤

Figure 2: Censored robustness study of proposed estimator for different models

The ECPs of the 95% confidence intervals for Υ(p) are reported in Table 4. The failure and censoring time
distributions were as in the preceding simulation studies in this subsection.
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Table 4: Empirical coverage probability of 95% confidence intervals for Υ(p) for θ = (−0.5, 1, 3, 1.5)⊤

Baseline distribution n1 = n2

p
.35 .45 .50 .65 .75

Gaussian

25 .937 .942 .961 .954 .953
50 .948 .941 .955 .964 .973
75 .934 .941 .957 .976 .956
100 .937 .942 .958 .964 .964

t15

25 .921 .926 .936 .935 .935
50 .923 .933 .928 .947 .938
75 .930 .941 .937 .932 .938
100 .943 .946 .955 .949 .942

4 Conclusion

The intuitive idea that pooling the two standardized samples would increase precision turbocharged our
desire to develop the proposed semiparametric estimator. The numerical studies indicate that it should provide
a robust alternative to the touchstone nonparametric estimator even in cases when the data do not subscribe
to an LS framework. Although the idea is easily entertained, setting up the rigorous mathematical framework,
as attempted in this paper, required considerable effort. In particular, we were able to obtain desirable
convergence rates for various oscillation moduli by framing the standardization as a projection, which then
allowed us to exploit a result derived by Stute and Zhu (2005). The convergence rates were instrumental in
killing remainder terms. Using the functional delta method we derived an asymptotic representation for the
centered VQC function process, which we then tailored for the cases of no-censoring and censoring. In both
cases, however, the representations are unwieldy and the weak limits, although Gaussian, are not distribution
free. The pointwise confidence intervals for the VQC function returned ECPs that were close to the nominal
95%. The proposed estimator showed an attractive disposition of performing well under misspecifications.

The paper provides a basic building block that we believe would undergird the setting up of a host of allied
procedures such as simultaneous confidence bands (SCBs) for the VQC function under an LS framework, and
the provision of a powerful model diagnostic test for checking the adequacy of the LS assumption. Judged on
the basis of the numerical studies in this paper, these procedures are expected to offer significant improvements
over the existing ones. Work on these is in progress and will be reported as soon as they are completed.

A Appendix

A.1 Local oscillations of distribution and quantile functions estimators

Recall that θ = (θ⊤
1 ,θ

⊤
2 )

⊤, where θi = (µi, σi)
⊤, i = 1, 2; and that γ = (γ⊤

1 ,γ
⊤
2 )

⊤ is in a neighborhood of
θ, where γi = (µ′

i, σ
′
i)

⊤. Recall that Fγ is the df of Wγ , see Eq. (2.1). Note that F̂γ is the (notional) EDF of

W
γi
ij = (Xij − µi)/σi, j = 1, . . . , ni, i = 1, 2. We write F̂θ = F̂ and Fθ = F .

For the local oscillations of the empirical process (s,γ) → F̂γ(s) − Fγ(s) in a neighborhood of θ, let

Ĥγ(s, t) = F̂γ(s) − Fγ(s) − F̂ (t) + F (t) for γ in a neighborhood of θ, and s ∈ R, t ∈ R satisfying (i)
∥γ−θ∥ = O(n−1/2) and (ii) |s− t| = O(n−1/2+α), where α < 1/2. In Lemma 3, we recast Lemma 4.2 of Stute
and Zhu (2005), which they noted is a modification of Theorem 37 of Pollard (1984).

Lemma 3. Under conditions C1 – C3 and conditions (i) and (ii) above, we have for uncensored data that

sup
s,t,γ

∣∣∣Ĥγ(s, t)
∣∣∣ = oP

(
n−1/2

)
. (A.1)

Proof To prove Eq. (A.1), let η = (1/σ′
1,−µ′

1/σ
′
1, 1/σ

′
2,−µ′

2/σ
′
2)

⊤ and let η0 = (1/σ1,−µ1/σ1, 1/σ2,−µ2/σ2)
⊤.

The random variable Wγ defined by Eq. (2.1), can be expressed as the projection η⊤U , where U is the vector
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(X1ξ, ξ,X2(1− ξ), (1− ξ))
⊤
. Note that P(η⊤

0 U ≤ t) = F (t). Let s∗i be between s and σ−1
i {(µ′

i − µi) + σ′
is}.

Since Fγ is the distribution function of Wγ , we have that Fγ(s) = P(η⊤U ≤ s). As in the proof of Lemma 1,

Fγ(s) = P
(
X1 − µ′

1

σ′
1

ξ +
X2 − µ′

2

σ′
2

(1− ξ) ≤ s

)
= F

(
µ′
1 − µ1

σ1
+
σ′
1

σ1
s

)
ρ+ F

(
µ′
2 − µ2

σ2
+
σ′
2

σ2
s

)
(1− ρ)

= F (s) +
ρ

σ1
{(µ′

1 − µ1) + (σ′
1 − σ1)s} f(s∗1) +

1− ρ

σ2
{(µ′

2 − µ2) + (σ′
2 − σ2)s} f(s∗2)

= F (s) +O(n−1/2).

Note that F (t) − F (s) = (t − s)f(t̃) where t̃ lies between t and s. Therefore F (t) − F (s) = O(n−1/2+α).
Following the proof of Lemma 4.2 of Stute and Zhu (2005), the half spaces (−∞, x] form a class with a
polynomial covering number. From the above calculations, the maximal measure of the sets included in the
class is

P(η⊤
0 U ≤ t)− P(η⊤U ≤ s) = F (t)− Fγ(s) = F (t)− F (s) +O(n−1/2) = O(n−1/2+α),

where α = 1/ζ, and reference to ζ can be found in condition C1. The rest of the proof follows as in Stute
and Zhu (2005), giving the in-probability bound O(δ2nαn), where α

2
n = log n/(nδ2n) and δ

2
n = O(n−1/2+α). It

follows that sups,t,γ

∣∣∣Ĥγ(s, t)
∣∣∣ = OP

(√
n−3/2+α log n

)
, from which Eq. (A.1) follows.

Remark For censored data, after some elementary calculations, Ĥγ(s, t) can be expressed as a functional

of Ĝγ(s, t) = Ĥγ(s) − Hγ(s) − Ĥ(t) + H(t) and Ĝγ,1(s, t) = Ĥγ,1(s) − Hγ,1(s) − Ĥ1(t) + H1(t), where Hγ

is the distribution function of (Zi − µ′
i)/σ

′
i and Hγ,1 is the subdistribution function of the (Zi − µ′

i)/σ
′
i

that are uncensored. By the methods of Lemma 3, it follows that sups,t,γ

∣∣∣Ĝγ(s, t)
∣∣∣ = oP

(
n−1/2

)
and

sups,t,γ

∣∣∣Ĝγ,1(s, t)
∣∣∣ = oP

(
n−1/2

)
. Then, it can be shown that Lemma 3 applies for the censored case as

well. The details are cumbersome, so we omit them.

Lemma 4. Let ∆γ(p) = Q̂γ(p)−Qγ(p)− Q̂(p) +Q(p). Under conditions C1–C4, and (i) and (ii) above,

sup
p∈[α,β],γ

|∆γ(p)| = oP(n
−1/2). (A.2)

Proof For each p ∈ [α, β] and each γ ∈ Γ, consider the expression Dγ(p) [cf. Eq. (10), Lo and Singh, 1986]

Dγ(p) = Q̂γ(p)−Qγ(p) +Qγ(F̂γ(Qγ(p)))−Qγ(Fγ(Qγ(p))).

Let Rγ(p) = Q(F̂ (Q(p)))−Q(F (Q(p)))−Qγ(F̂γ(Qγ(p)))+Qγ(Fγ(Qγ(p))). Then ∆γ(p) = Dγ(p)−Dθ(p)+

Rγ(p). We will show that each is bounded above in absolute value by sups,t,γ |Ĥγ(s, t)|. Following Lo and

Singh (1986), we can write Dγ(p) = D
(1)
γ (p) +D

(2)
γ (p), where for each γ,

D(1)
γ (p) = Qγ(Fγ(Q̂γ(p)))−Qγ(F̂γ(Q̂γ(p))) +Qγ(F̂γ(Qγ(p)))−Qγ(Fγ(Qγ(p))),

D(2)
γ (p) = Qγ(F̂γ(Q̂γ(p)))−Qγ(p).

All terms ofD
(1)
γ (p) are operated by the composition mappingsQγ◦F̂γ orQγ◦Fγ , which act on Q̂γ(p) orQγ(p).

By Lemma 3 of Lo and Singh (1986) supp∈[α,β] |Q̂γ(p)−Qγ(p)| = O(n−1/2(log n)1/2) a.s. = o(n−1/2+α) a.s.,

where 0 < α < 1/2. Apply the mean value theorem to the two segments of D
(1)
γ (p) to obtain

D(1)
γ (p) =

Fγ(Q̂γ(p))− F̂γ(Q̂γ(p))

fγ(Qγ(p∗))
+
F̂γ(Qγ(p))− Fγ(Qγ(p))

fγ(Qγ(p∗∗)
, (A.3)

13



where p∗ lies between F̂γ(Q̂γ(p)) and Fγ(Q̂γ(p)), and p
∗∗ lies between F̂γ(Qγ(p)) and Fγ(Qγ(p)). We show

that we can replace the denominators of the two ratios in Eq. (A.3) by fγ(Q(p∗)) and fγ(Q(p∗∗)) respectively.
This is because the conditions on fγ and its derivative, along with Remark 1 following Lemma 2 imply
that, for instance, the difference d = fγ(Qγ(p

∗)) − fγ(Q(p∗)) is O(n−1/2) uniformly over γ in the n−1/2

neighborhood of θ. Then we add and subtract F̂ (·) and F (·) to the numerator of the ratio that occurs in the
remainder term. With K denoting a generic constant, it follows that Rn, the remainder term, is

Rn ≤ K

{
sup
s,t,γ

|Ĥγ(s, t)|+O
(
n−1/2(log n)1/2

)}
×O(n−1/2), (A.4)

the upper bound free of γ. Likewise for the second ratio. Let K = infp∈[α,β],γ fγ(Q(p)). It follows that

sup
p∈[α,β]

|D(1)
γ (p)| ≤ 1

K
sup

x∈[Qγ(α),Qγ(β)],|x−y|≤cn−1/2+α

|F̂γ(x)− Fγ(x)− F̂γ(y) + Fγ(y)|+ Rn

= OP

(
sup
s,t,γ

∣∣∣Ĥγ(s, t)
∣∣∣) ,

a uniform bound for all γ. By similar techniques, we can show that supp∈[α,β] |Rγ(p)| = OP

(
sups,t,γ

∣∣∣Ĥγ(s, t)
∣∣∣).

To handle D
(2)
γ (p), we apply the mean value theorem and obtain

D(2)
γ (p) =

F̂γ(Q̂γ(p)− p

fγ(Qγ(p∗))
, (A.5)

where p∗ is bracketed between Q̂γ(p) and p. For the numerator of the ratio in Eq. (A.5), we use an inequality
that appears in the proof of Theorem 2 of Lo and Singh (1986), which is

|F̂γ(Q̂γ(p)))− p| ≤ |F̂γ(Q̂γ(p))− F̂γ(Q̂γ(p−))|
= |F̂γ(Q̂γ(p))− Fγ(Q̂γ(p)) + Fγ(Q̂γ(p−))− F̂γ(Q̂γ(p−))|. (A.6)

We replace the denominator of the ratio in Eq. (A.5) by fγ(Q(p∗)). From Eq. (A.5) and Eq. (A.6), therefore

|D(2)
γ (p)| ≤ 1

fγ(Q(p∗))
|F̂γ(Q̂γ(p))− Fγ(Q̂γ(p)) + Fγ(Q̂γ(p−))− F̂γ(Q̂γ(p−))|+ Rn,

where Rn admits a rate like Eq. (A.4). It follows as before that supp∈[α,β] |D
(2)
γ (p)| = OP

(
sups,t,γ

∣∣∣Ĥγ(s, t)
∣∣∣).

Therefore, supp∈[α,β],γ |∆γ(p)| = OP

(√
n−3/2+α log n

)
, from which Eq. (A.2) follows.

A.2 Uncensored case details

Recall that n1/n → κ as n1 → ∞ and n2 → ∞, κ1 = κ = 1− κ2. Since Wij = (Xij − µi)/σi, we have

n1/2(µ̂i − µi) =

(
n

ni

)1/2

σi ×

n−1/2
i

ni∑
j=1

Wij


= κ

−1/2
i σi ×

n−1/2
i

ni∑
j=1

Wij

+ oP(1). (A.7)
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Because µ̂i − µi = OP(n
−1/2
i ), and

∑nj

i=1Wij = oP(ni), we have

σ̂2
i =

1

ni

ni∑
j=1

(Xij − µ̂i)
2 =

1

ni

ni∑
j=1

(Xij − µi + µi − µ̂i)
2

= σ2
i

1

ni

ni∑
j=1

W 2
ij − 2σi(µ̂i − µi)

1

ni

ni∑
j=1

Wij + (µi − µ̂i)
2

= σ2
i

1

ni

ni∑
j=1

W 2
ij + oP(n

−1/2
i ). (A.8)

Applying the delta method, it is easy to see from Eq. (A.8) that

σ̂i − σi =
1

2σi
(σ̂2

i − σ2
i ) + oP(n

−1/2
i ) =

σi
2

× 1

ni

ni∑
j=1

(W 2
ij − 1) + oP(n

−1/2
i ).

Then, it follows that

n1/2(σ̂i − σi) = κ
−1/2
i

σi
2

n−1/2
i

ni∑
j=1

(W 2
ij − 1)

+ oP(1). (A.9)

By Corollary 21.5 of van der Vaart (1998), if F is differentiable at Q(p) with positive derivative f(Q(p)), then

n1/2
(
Q̂(p)−Q(p)

)
= −n−1/2

2∑
i=1

ni∑
j=1

1{Wij≤Q(p)} − p

f(Q(p))
+ oP(1). (A.10)

Finally, it is easy to see that

n1/2
(
F̂ (s)− F (s)

)
= n−1/2

2∑
i=1

ni∑
j=1

{1{Wij≤s} − F (s)}+ oP(1). (A.11)

We apply the representations given by Eq. (A.7) and Eqs. (A.9)–(A.11) to the RHS of Eq. (2.12) to obtain
Eq. (2.15).

A.3 Censored case details

We first obtain representations for each of the centered quantities on the RHS of Eq. (2.12). From Major
and Rejtö (1988) and the functional delta method (Theorem II.8.1. of Andersen et al. (1993), it follows that

n1/2(F̂ (x)− F (x)) = S(x)n−1/2
n∑

l=1

I
(1)
l (x) + oP(1), (A.12)

where

I
(1)
l (x) =

I(Wl ≤ x, δl = 1)

P(W > Wl)
−
∫ x

0

I(Wl > y)dΛ(y)

P(W > y)
. (A.13)

By Proposition II.8.4 of Andersen et al. (1993), ϕ(F ) = Q(p) is (tangentially) compactly differentiable at
F with derivative dϕ(F ) ·h = −h(Q(p))/f(Q(p)). Equivalently, n1/2(Q̂(p)−Q(p)) is asymptotically equivalent
to (1− p) dϕ(F ) · n1/2(F̂ − F ). Applying the operator dϕ(F ) on h = n1/2(F̂ − F ), Eq. (A.12) implies that

n1/2(Q̂(p)−Q(p)) = − (1− p)

f(Q(p))
n−1/2

n∑
l=1

I
(1)
l (Q(p)) + oP(1). (A.14)
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For i = 1, 2, let Ŝi(·) be the KM estimator of Si(x) = P (Xi > x) and let F̂i = 1 − Ŝi. Let νi = inf{u :
Hi(u) = 1} ≤ ∞, where Hi is the distribution function of Zil, l = 1, . . . , ni. Let AHi be the set of all atoms of
Hi, which may possibly be empty. For any measurable function φ with

∫
φdFi <∞, with probability 1 and in

the mean,
∫
φdF̂i converges to

∫
φdF̃i, where F̃i(x) = Fi(x)I(x < νi)+{Fi(νi−)+I(νi ∈ AHi

)F (νi)}I(x ≥ νi)
(Stute and Wang, 1993). It will be assumed that νi < ∞ and that νi is not an atom of Fi (Stute and Wang,
1993; Stute, 1995). Then, F̃i = Fi. When φ(x) is x or x2, one obtains the estimators of the first two moments.

Let Ti1 < . . . < Timi
be the distinct uncensored Zij ’s. Let dil and ril be the number of observed failures at

Til and the number of Zij that are greater than or equal to Til. Note that ∆Ŝi(Til) ≡ Ŝi(Til)− Ŝi(Ti(l−1)) =

−Ŝi(Ti(l−1))dil/ril, and Ŝi(Ti0) ≡ 1. The KM integral estimates of µi and ψi, the second moment of Fi, are

µ̂i = −
mi∑
l=1

Til∆Ŝi(Til); ψ̂i = −
mi∑
l=1

T 2
il∆Ŝi(Til). (A.15)

Let CGi
(t) = Dt(ΛGi

, 1−Hi), where ΛGi
is the CHF associated with Gi. Stute (1995) proved that∫

φ(x)dF̂i(x) =
1

ni

ni∑
j=1

{φ(Zij)βi0(Zij)δij + βi1(Zij)(1− δij)− βi2(Zij)}+ oP(n
−1/2
i ), (A.16)

where βim(x),m = 0, 1, 2, are

βi0(x) =
1

1−Gi(x)
;

βi1(x) =
1

1−Hi(x)

∫ ∞

x

φ(w)dFi(w);

βi2(x) =

∫ ∞

−∞

∫ x∧w

−∞

dΛGi(v)

1−Hi(v)
φ(w)dFi(w) =

∫ ∞

−∞
CGi(x ∧ w)φ(w)dFi(w).

The expectations of the second and third summands in Eq. (A.16) cancel out (Stute, 1995). The first summand
in Eq. (A.16) has expectation equal to

∫
φdFi. When φ(x) = x,

∫
φdFi = µi. We obtain from Eq. (A.16) that

n1/2(µ̂i − µi) = κ
−1/2
i

n−1/2
i

ni∑
j=1

I
(2)
ij

+ oP(1), (A.17)

where, replacing φ(w) with w in the definition of βi1(x) and βi2(x) above, we obtain the influence function

I
(2)
ij = {Zijβi0(Zij)δij − µi}+

1− δij
1−Hi(Zij)

∫ ∞

Zij

w dFi(w)−
∫ ∞

−∞
CGi

(Zij ∧ w)w dFi(w). (A.18)

Note that E(I(2)ij ) = 0 for j = 1, . . . , ni and i = 1, 2. The estimate of σi will be through the first two KM

integral estimates of µi and ψi. Accordingly, if we let φ(w) = w2 then
∫
φ(w)dFi = ψi, and from Eq. (A.16),

n1/2(ψ̂i − ψi) = κ
−1/2
i

n−1/2
i

ni∑
j=1

I
(3)
ij

+ oP(1), (A.19)

where, replacing φ(w) with w2 in the definition of βi1(x) and βi2(x) above, we obtain the influence function

I
(3)
ij =

{
Z2
ijβi0(Zij)δij − ψi

}
+

1− δij
1−Hi(Zij)

∫ ∞

Zij

w2 dFi(w)−
∫ ∞

−∞
CGi(Zij ∧ w)w2 dFi(w). (A.20)

Note that E(I(3)ij ) = 0 for j = 1, . . . , ni and i = 1, 2.
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Applying the delta method yields

n
1/2
i (σ̂i − σi) =

1

2σi
n
1/2
i

(
σ̂2
i − σ2

i

)
+ oP(1)

=
1

2σi
n
1/2
i

[
(ψ̂i − ψi)− 2µi(µ̂i − µi)

]
+ oP(1). (A.21)

Eq. (A.21) indicates that, for n1/2(µ̂1 − µ1), the scaling factor computed from Eq. (2.12) will be modified to[
ρ

σ1
+

1− ρ

σ2
− µ1

σ1
.
1

σ2

{
µ1 − µ2

σ1
ρ+Q(p)

}]
f(C(p)).

For n1/2(µ̂2 − µ2), the modified scaling factor is

−σ1
σ2

[
ρ

σ1
+

1− ρ

σ2
− µ2

σ2
.
1

σ2

{
µ1 − µ2

σ1
ρ+Q(p)

}]
f(C(p)).

For n1/2(ψ̂1 − ψ1), the modified scaling factor is

1

2σ1σ2

{
µ1 − µ2

σ1
ρ+Q(p)

}
f(C(p)).

For n1/2(ψ̂2 − ψ2), the modified scaling factor is

− σ1
2σ3

2

{
µ1 − µ2

σ1
ρ+Q(p)

}
f(C(p)).

Apply the representations in Eqs. (A.12), (A.14), (A.17), and (A.19) to the RHS of Eq. (2.12) to get Eq. (2.18).
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