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Abstract

Two-sample location-scale refers to a situation in which a pair of random variables are linearly related
to a base random variable that has mean 0 and variance 1. Using a formulation that leverages the location-
scale structure, a semiparametric estimator of the vertical quantile comparison function is proposed and
its large-sample properties are derived. Its efficacy relative to that of a nonparametric estimator as well as
its robustness to departures from location-scale models is investigated through numerical studies.
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1 Introduction

Suppose that there are two distribution functions F} and F5 induced by X; and X5 respectively, a pair
of independent random variables. Let p € (0,1). Associated with F;,i = 1,2, are Q;(p), where Q;(p) =
inf{z : F;(x) > p} are the quantile functions that yield values, called the p-quantiles, on the real line. The
vertical quantile comparison (VQC) function, T(p), maps the interval (0,1) back to itself through T : p —
(FyoQ1)(p) = F2(Q1(p)). As p runs over the interval (0, 1), the graph of the VQC function traces a curve that
may broadly overlap the 45-degree line, or may traffic in the upper or lower regions away from the 45-degree
line, or may intersect it at one or several points. The 45-degree line is the benchmark signaling the equality
of F1 and FQ.

The vertical quantile function has broad applicability in many areas. For instance, in clinical trials, if Fj
and Fy are the distribution functions of the time to an outcome for control and treatment groups respectively,
then Y'(0.5) represents the probability that a treatment group individual has a shorter survival time than the
median for the control group. A low value indicates that individuals from the treatment group have a higher
likelihood of survival beyond the control median, suggesting that the treatment is effective and may be pursued.
A high value would not provide sufficient confidence in the treatment, calling for its termination. In this way,
the value of the VQC function at various designated p quantiles (signposts) offers a road map of treatment
efficacy. The measure provides a robust alternative to hazard ratios with lesser computational overheads. The
same idea pervades in quality control and reliability. The VQC function helps quantify the frequency with
which a new product outperforms an existing one at some of its chosen p quantiles. In economics, the VQC
function is used to compare incomes between groups, offering interpretable summaries of relative advantage at
specific quantiles (Chernozhukov, Fernandez-Val, and Melly, 2013). For censored data, Li, Tiwari, and Wells
(1996) proposed a nonparametric estimator for Y(p), which employed the Kaplan—Meier (KM) estimator of
F5 and the quantile function estimator associated with F;. The estimator was reported to perform well in
numerical studies.

Suppose that X; = u; + o;W;, i = 1,2, where W, are independent copies of W having the distribution
function F' with mean 0 and variance 1. We refer to W as having the base distribution F'. For example, W
may be standard normal. The parameters p; and o; are the means and standard deviations of X;. Note that

Fi(z) :F(H) i=1,2. (1.1)
o
It is said that F} and F» belong to a location-scale (LS) family of distributions with base distribution function
F. LS models are widely used in medical research, where outcome distributions are paramount for eval-
uating treatment efficacy and clinical decision-making. More specifically, differences in disease progression
often appears as a shift or scale of a health related outcome distribution such as blood pressure, survival
time, biomarker levels, among others. LS models are essential in medical studies since they naturally handle
heterogeneity between patient groups. In survival analysis, accelerated failure time models assume that the
log-survival times follow an LS family of distributions such as the log-normal or log-logistic, allowing clinicians
to interpret treatment effects as multiplicative changes in median survival (Kalbfleischa and Prentice, 2002).
In this paper, we are concerned with estimation of the VQC functions in two-sample LS families. Note
that the distribution of (X; — u;)/0i,i = 1,2, is F', so, a basic rationale is that the LS framework admits the
pooling of standardized values from both samples, inflating the effective sample size that one expects would
improve the efficiency of the estimate. The proposed estimator, as will be seen below, is semiparametric.
The quantile functions associated with F; are linearly related to the quantile function associated with F:

Qip) = pi+0Qp), i=12 (1.2)
From Eq. (1.1) and Eq. (1.2), the VQC function under the two-sample LS framework is

) = £ (M4 Do), (13)
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a formulation that leverages the LS structure to express Y (p) in terms of the base distribution and its quantile
function. Whereas the nonparametric estimator of Y(p) uses the separate samples for the distribution and



quantile functions estimation, the proposed approach exploits Eq.(1.3) and uses the combined sample for
estimating F' and @ embedded in the LS-adjusted formula for Y(p). The apparent advantage that an inflated
sample gives may come with a price as we now need estimates of the finite dimensional parameters p; and o;.
This paper investigates whether the trade off leads to efficiency gains while preserving some of the flexibility
of the nonparametric approach.

In proposing to exploit Eq. (1.3), we first consider the case of no censoring. Later we show how to extend
the approach to the censored case. Let Xji,...,X;,, be a random sample from F;, i = 1,2. Estimate
0; = (ui,0;) " and form the estimated standardized values Wij = (X — [1i)/64,5 = 1,...,n4,i = 1,2, where
[1; and &; are the sample means and standard deviations respectively. Let Fé be the empirical distribution
function of the ordered W” and let Qé be the empirical quantile function, see Section 2 for the notations. Our
estimator of Y (p) is

T(p) = B (“‘“ i ”Q,;<p>) . (1.4)

g2 2

Q>

When there is right censoring, Eq. (1.4) still applies with Fé taken as the Kaplan—Meier (KM) estimator
of the pooled estimated standardized values, and [i; and &; are the estimates obtained via Stute’s (1995) KM
integrals. A technical justification that pooling the samples in the presence of censoring does not lead to
internal conflicts will be offered when we address the censored case in Section 2.3.

The proposed estimator is indexed by estimated (finite dimensional) parameters. A technical challenge
is to replace the estimated parameters by their true ones, for which we exploit an empirical processes ap-
proach employed by Stute and Zhu (2005). The decomposition of the (centered) estimator’s large-sample
representation as a sum of centered processes indexed by “known parameters” — for which large-sample repre-
sentations can be readily given from available results — and the centered finite-dimensional quantities fi; — p;
and 6; — o; are derived. Due to the presence of estimated parameters (the plug-ins), the proposed estimator
has an intractable asymptotic variance covariance function. The bootstrap is deployed to construct pointwise
confidence intervals for the VQC function using the proposed estimator.

The paper is organized as follows. Section 2.1 details a generic large-sample analysis. The cases of no-
censoring and censoring are treated in Sections 2.2 and 2.3. Section 3 contains numerical results. Some
concluding discussion is given in Section 4. Certain technical derivations can be found in the Appendix.

2 The estimator and its large-sample study

We first derive a generic large sample representation for the proposed estimator. In the subsections
that follow, we fine-tune the representations for the cases of no-censoring and censoring.

2.1 Generic large-sample representation

For i = 1,2, let X;;,5 = 1,...,n;, be independent and identically distributed (iid) random variables
with distribution function F;. The random variable W;; = (Xij — p;)/o;, is notional (theoretical construct;
unobservable), hence we must use the estimated W;; obtained by substituting estimates fi; and &; for the
unknown parameters. With this in mind, let 8 = (8,0, )T, where 8; = (u;,04)",i =1,2. Let v = (] ,v5) 7"
be in a neighborhood of @, where v, = (u,0/)7,i = 1,2. Let W = (X5 — pi)/o; and let Fyjf be the
distribution of W;“ Note that ng =W, =1,...,n4, are iid with common distribution F'. Let W, be a
random variable from the collection W;JY To determine F,, its distribution function, let &, independent of X;
and X5, be Bernoulli with success probability p, indicating membership in the first population. Then

Xfu’ngu’l_g
W.,:<1/1><2/2 : (2.1)
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Note that when u; = p; and o} = oy, W, = Wg := W has distribution function /. We adapt the conditions of
Stute and Zhu (2005) to impose the following: (C1) For some ¢ > 2, E (| X;|°) < oo; (C2) For all v satisfying



|y — 6| = O(n~'/2), the random variables W,'* have continuously differentiable densities, and both the
densities and their derivatives are bounded and bounded away from 0 over the support, uniformly in ~,; (C3)
The distribution functions of W;'* are continuous in -, at ; = 6;, meaning that v, = 0; = F}j' (-) = F(-).

Lemma 1. Let [a,b] C R'. Then, SUPy¢a,b] |Fy(w) — F(w)| = O(n=1/2).

Let f be the density of F. For any w € R', let w} be between w and o ' {(u; — p1;) + olw}. Then .

X Xy — 1}
Fy(w) = PW, <w) = ]P’( 101'u1 <w>p+ﬂ3’<i‘/2'u2 §w> (1-p)
r_ !
N <W1 mom g )P+P<Wz<u2 = +G2w> (1=0p)
o1 0'1 02 02
/! ! /
= F<M+Ulw)p+F('u2 “2+02w>(1p) (2.2)
o1 o1 02 02
= Fw)+ 2 (i~ m) + (0] — o)) ()
1-—- *
s~ p2) + (o = 2w} f(w) (2:3)

By condition C2, uniformly for w € [a,b], |w} —w| = O(n~/2). In turn, |[wi —w}| = O(n~"'/2). By the mean
value theorem and condition C2, |f(w}) — f(w3)| = O(n='/?). Eq.(2.3) completes the proof. O

For a € (0,1) and 8 € (0,1), and p € [a, 8], Q~(p) := inf{w : Fy(w) > p}. Note that Qe(p) = Q(p). Let
ci be between Q(p) and o} {(1 — pi) + 0lQ~(p)}. Let dy = pf(c1)/(pf(c1) + (1 = p)flc2)) =1 —do.

Lemma 2. Suppose for all p € [a, 8], Q~(p) € [a,b] uniformly over v, where [a,b] is a finite interval. Then

QD) - QW) = ~ ()~ L — ) Qy D) P (0] — 1) — Qa(p) 2

01 02 01 02

(o —o2).  (2.4)

Proof Since Fy(Q~(p)) = p, apply Eq. (2.2) to obtain

pr (M g, m) + - F (02 0,0 .
(251 o1 02

02

Applying the mean value theorem, we must have

o[r@en + (M2 4 B0 - aw ) st

oy

) [FQo) + (221 1 %0, - Q) flea)| =

Then, after some elementary transpositions, it is easy to show that

I /

(pf(er) + (1= )f(e2)) (@ (p) = Q) = —pflen) Fl = (1= p)f(ea) 22

2

oy — o1

- Q) (o) () )

o2
Eq. (2.4) follows. The proof of the lemma is completed. O

Remark 1 For p € [a, 3], let A, (p) = {w : Fy(w) > p}. Note that inf A, (p) = Q(p). By condition C2 and
Eq. (2.3), |Fy(w) — F(w)| < K||6 — 7|, where K is a generic constant. Since ||y — 0| = O(n~'/2), the upper
bound K||@ — ~|| can be chosen so that p+ K|v — 0| € [a, 8]. If w € A,(p), then F(w) = F,(w) + (F(w) —
Fy(w)) > p—K|@—~|. Hence A,(p) C Ag(p— K]0 —~]|). It follows that Q(p— K| —v|) < Q~(p). On the
other hand, if w € Ag(p+K|0—~||), then F(w) > p+K|/@—~| and hence that ., (w) > F(w)—K|v—8| > p.



Hence Ag(p + K10 ~y[) C Ao (p). Tt ollows that @ — K0 — ) < Qs(p) < Qlp-+ K0 —9])- By the
mean value theorem, uniformly for p € [, 8], |Q~(p) — Q(p)| < K||@ —~|| = O(n~1/?).

Let Fﬂ, be the notional EDF of {Wg’i,j =1,...,n;4 = 1,2}. As already mentioned, when v = 8, the
random variables ng =Wi,5=1,...,n4,¢ = 1,2, are iid with distribution function F'. Combine all W;; and
let Fp = F be the (notional) EDF of the combined sample. We are concerned with the special case v = é,

~ AT AT R “
where 8 = (0, ,0,)", 6, = (f11,61)" and 8y = (1o, &QQT, and [i; and &; are the mean and standard deviation
estimators. Combine all W;; = (X;; — f1;)/6; and let F be the (computable) EDF of the combined sample.

Set C'~( ) = (/ll — fig —i—&lQé(p)) /62 and C(p) = (p1 — p2 + 01Q(p)) /o2. From Eq. (1.3), the VQC
function is Y(p) = F o C’( ) = F(C(p)). From Eq. (1 4), the proposed estimator is F5(Cj(p)). The estimator

Y is a composition of Fé, an estimator of F, and C 5(p), which shifts and scales an estimator of @ using the
mean and standard deviation estimators. Using the nl/ 2 consistency of fi; and &;, it can be shown that

B(p) = Cop)—Clp) = Z(Qs(p) — Qp)) + U% {(fn — 1) + (61 — 01)Q(p) — (12 — p2)}
1
o3

02

{(n1 — p2) + 01Q(p)} (62 — 02) + 0p(n™ /). (2.5)

In propositions 1 and 2 we derive large sample representations for A(s) := Fg(s) — F(s) and Qé (p) —Q(p).
Proposition 1. Under conditions C1-C3, A(s) := Fé(s) — F(s) admits the large sample representation

Als) = F(s)—F(s) + U%f(s) {(in — 1) + 5(61 — 01)}

1—p
(op)

+ F(8) {2 — p2) + (62 — 02)} + op(n~'/?). (2.6)

Proof We write F 5(s) = Fy(s)— ( ) — F(s)+ F(s) + Fj(s) + F(s)— F(s). Apply Eq. (A.1) in Lemma 3 to
obtain Fj(s) — F(s) = F(s) — F(s)+ Fj(s) — F(s) +op(n~"/?). Let s be between s and a; ' {(j1; — ;) + &5}
Applymg Eq. (2.3) to Fg(s) — F(s), we have, modulus a remainder term op(n~1/2),

Als) = F() = F(s)+ £ {(n = ) + (61— o)} FsD) + =L { (e — ) 5 (62— 02)} £(5).

Since s 5 and since f is continuous, Eq (2.6) follows immediately. O
We assume (C4): For all p € [a, 5], Q~(p) € [a,b] uniformly over -, where [a, b] is a finite interval.

Proposition 2. Under conditions C1-C4, Q4(p) — ( ) admits the large-sample representation
Qep) = Q1) = Q) — Q) — = {(m ) + Q(p) (61 — o)}

2~ 1)+ Q) (52— o)} + o072, .1)
Proof Substitute v = 6 in Eq. (2.4) to obtain
dl " d2 N dl ~ d2 ~
Qé(P) -Q(p) = —a(u1 — 1) — 072(/12 — p2) — Qé(P)a(ﬁ —01) — Qé(?)a(@ — 02), (2.8)

where dy = pf(c1)/(pf(c1) + (1 —p)f(ca)) =1 —da, and ¢; are between Q(p) and o *{ (i — pi) + GiQg(p)}-
The consistency of fi; and ; along with conditions C1—C4 implies through Eq. (2.8) that Qé(p)L Q(p) and
that ¢; — Q(p),i =1,2. In turn, it follows that di— p and dy—1— p. From Eq. (2.8) it now follows that

Qe(p) — Qp) = —J%{(m — 1) + Qp) (61 — 1)}

)

o9 {(fi2 — p2) + Q(p) (62 — 02)} + op(n~/?). (2.9)




Applying a decomposition analogous to that used in the proof of Proposition 1, and then applying Lemma 4,

Qsp) —Qp) = Q(
Q(

p) — Q) + Q5(p) — Q(p) + Q4(p) — Qs(p) — Qlp) + Q(p)
p) — Q(p) + Q4(p) — Q(p) + op(n~'/?).
Then apply Eq. (2.9) to obtain Eq. (2.7). D

Combining Eqgs. (2.5) and (2.7), we obtain

Bp) = -

o {(r = p1) + (61 — 01)Q(p) — (f12 — p2)}

- Ui (i = p2) + @)} (02 = 72) + TH(Q(p) ~ Qp)) + 000 7)

é{(m — )+ (61— 01)Q) — (2 — )} — (j%{ml — 2) + 01Q(p)} (62 — 02)

+ 2 (Q0) - Q) ~ 2 A — ) + Q) (01— 1))

D) (s ) + Q) (02— )} + 0o, (210)
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Combining the coefficients for the various centered quantities in Eq. (2.10), we obtain

Bo) = 7H(Q0) —@w) + Ll -~ {” U(i_p)} (2 — 12)
+ 10—2/762(1?)(&1 —01) — Ji% (1 — p2) + 01 (2= p) Q(p)] (62 — 02) + op(n~Y/?).  (2.11)

Let D[a,b] be the class of cadlag functions on [a,b] equipped with the supremum norm. Let T'(-) =
. o NT
(Fg(-),C(-)) be the sequence of random elements and T(-) = (F(-),C(-))" be the fixed point, both in

Dla,b] x D]a, 8]. Suppose that n'/?(T' —T) Ly W asn — oo on Dla,b] x D[a, 8], where W = (W, Wy) T is
a random element of Dla,b] x D]«, 8]. Let C[a,b] be the subspace of continuous functions in Dla, b]. Define

D(p) = ' (FCW) - FOW)) + 7 F(CE)n'” (Q) - Q)
(L4 222) 106 {2 - m) - Znt i )

n 3 (”‘J“p + Q<p>) F(C)) {nl%l —o1) = a6y az>} . (212)

g9 g1 (o)
Large-sample representations for n'/2 (F(C()) — F(C’()))7 nl/? (Q() - Q(-)), and for n'/2(fi; — p;),i = 1,2,
and n'/2(6; — 0;),i = 1,2, found in Eq. (2.12) will be given in Appendixes A.2 and A.3.
Theorem 1. Under conditions C1-C4, n'/? ('i' — ) is asymptotically equivalent to D given by Eq. (2.12).
b

,b] by @(n,9) := o =n(y) for every (n,v) € Dla,b] x Dla, 5].
(-)T). Therefore,

a

Proof Define ¢ : Dla,b] x Dla, 8] — D¢
=T

Note that Y(-) = o(T(-)") and T(-)
2 {360 -0} = o (107) - o X))

By Proposition 11.8.8 of Andersen, Borgan, Gill, and Keiding (1993), ¢ is compactly differentiable tangentially
to Cla,b] x D[a, 8] at T with derivative d (T ") - (h, k). The operator d (T ") acting on (h, k) produces

do(T")-(hk) = de(F,C)-(hk) = hoC+ F oC -k, (2.13)



where F’ is the ordinary continuous derivative of F' and the last “.” is ordinary multiplication. Theorem I1.8.1
of Andersen et al. (1993), the functional delta method, can be now applied to deduce that

W2 (T =T() = 02 (p@ ) —o(™T)  and  de(TT)-nl2 (T -T7)

. T
are asymptotically equivalent. Since n!/? (T — T) is asymptotically equivalent to the vector n'/? (A, B) ,
we may apply Eq. (2.13) and evaluate do(T") = do(F,C) at h = n'/2A(-) and k = n'/2B(-), to obtain

W2 (TC)=T()) = n2ACE) + 1 (CO) x n2B() + op(1). (2.14)

Plugging in the representations given by Eq. (2.6) and Eq. (2.11) into Eq. (2.14), it can be checked that the

first two terms of Eq.(2.12) is immediate. It can be checked that n'/?(fi; — u1) is scaled by the factor

{p/or+ (1 = p)/ox} f(C(p)); that n*/?(fia — pz) is scaled by the factor
01

o*lz{(1_p)—(1+(1—p)2}f(0(p)) - —(Ml‘f’

02 \ 01 02

) 7).

Recall that C(p) = (u1 — po + 01Q(p)) /0. The centered n'/?(61 — oy) is scaled by the factor

{pc<p> L1 ”Q(p>} HCw) = {’“ —rz, pQW) | 1- p@(p>} )

01 02 0102 02 02

= {2 e} o,

02

Finally, the centered n'/2(65 — 02) is scaled by the factor

{ L0y — L s — 1) + {or + (1= p)on} Q(p)]} F(CW))

g9 g5

= {F 500 = )+ B00I1 )= 1 = ) + Lo + (1= P} QP | 1)
—- 2 {0 ) e,

01
It follows that n'/2 (T(p) — T(p)) is asymptotically equivalent to D(p) given by Eq. (2.12). O

)= 1()) in Dla, 5]

From the proof of Theorem 1, we can deduce that the weak convergence of n'/2 (T
T(- ) and the functional

(-
to a zero-mean Gaussian process follows from the weak convergence of n'/2 ( () =T()

delta method. In the next two subsections we obtain final expressions for D(p).

2.2 Large-sample representation for the uncensored case

Let n1/n — K asn; — oo and ny — 0o and let kK1 = Kk, kg = 1 — k. In Appendix A.2 we show that

D) = 123> (L e - FICW)} - Z1(C —1/2221{Ww<@p} P

i=1 j=1 i=1j=1 Qp)

1-— _ _
+ o1 (P P) F(C(p)) k—1/2 1/2ZW1] (1—k) -1/2 UZZWQJ

% (/~L1 N2)Up2+ UlQ( )}f(C(p))
{ _1/2 i(wlzj S| - k)2 n2—1/2 i(ng -1) + op(1). (2.15)



The first two terms of D(p) result when p; and o; are known. The additional terms are the price of
estimating the unknown pu; and ;. Due to the lengthy expression for ﬁ(p) above, the limiting covariance
function of the Gaussian process would have a complicated form. In Section 3, we use bootstrap to approximate
the variance of T(p), using which we compute pointwise confidence intervals for the VQC function.

2.3 Large-sample representation for the censored case

For each ¢ = 1,2, let Cy;,5 = 1,...,n; be a random sample from G;, where the G; are the distribution
functions of the censoring variables. The observed data consists of {(Z;;,0:;),j = 1,...,n;,% = 1,2}, where
Zij = mln(XWC”) and d;; = I(X;; < C’”) So that we handle a single (pooled array), let W = (Z — 1)/,
where i may be [i; or jio and likewise for .

Standardizing the observed minimum artificially shifts and scales the censored observations. We show that
pooling standardized values continues to provide correct estimates of F'. Let Ay be the associated cumulative

hazard function (CHF). Let G; be the distribution functions of (C; — ji;)/;. Define
¢

Dy(a,f) = / do(s)/8(s).

— 00

It is standard to show under the LS framework that Hy, ,(t) = P(W <t,6=1) and Hy, (t) = P(W <t) are

Hygo(t) = pDi(Fao1/(1=G1)) + (1= p) Dy (Fp /(1= Go)) 5
dHy, () = (p(1=Gi() + (1= p)(1 = Ga(t))) dF5(t); (2.16)
L= Hy () = (1= Fa(t) (p(1 = Ga(t) + (1= p)(1 = Ca(t))) . (2.17)

Performing the operation Dy(Hy, ;,1 — Hyy ), it is seen from Eq. (2.16) and Eq. (2.17) that

! o dFs(s

— 00 — 00

hence correctly estimating the CHF and, in turn, the distribution function Fj. In Appendix A.3 we show that

Diy) = S<C<p>>n1/221§”<c<p>>j;ﬁggiiup)nwzf;l)(@(p»
i=1 j=1

Rt E Q(p)H FCE) 2 (0?31
j=1

01 g9 g1 0'2
o |p 1=p p 1 [p— N S C)
- — | = C 1- I
nlLyioie s { + QO f] 1€ =07 27D
1 (=g HOm) w2 [ nr1r2 il@
20102 ! =t
=1
01 ) K1 — K2 —1/2 1/2 (3)
C 1-— 15 2.18
T 203 { - P+Q(p)}f( () (1 = k) Z +op(1 (2.18)
The influence functions Il(l)(~)7l =1,...,n, Il(] ),j =1,...,n;, and IL(J ),j =1,...,n; are given by Eq. (A.13),

Eq. (A.18) and Eq. (A.20) respectively.



3 Simulation studies

3.1 Numerical results for the uncensored case

We carried out comparison studies between the proposed and Li et al. (1996) estimators. The comparison
was based on the mean integrated squared error (MISE), where the integrating variable p was taken over a fine
grid of values in the interval (0.05,0.95). The integrand is the square of the difference of the estimator from
the true VQC function. The percent improvement of the proposed estimator relative to the nonparametric
estimator was computed.

The failure times for both samples were generated from distributions belonging to some location-scale
family. Formally, each random variable is defined as X; = p; + o;W,i = 1,2, where W follows some chosen
baseline distribution such as standard normal, standardized logistic, or a standardized ¢ distribution. When

W = Z is standard normal, the VQC function is Y(p) = @(M;f‘z + g;Q(p)), where ®(.) and Q(.) are

the distribution and quantile functions of the standard normal distribution respectively. When W is the
standardized logistic, then W = \/gV, where V is standard logistic. The VQC function in this case is

T@hﬂ%(M;WV§+2me)

where Fy (.) and Qv (.), are the distribution and quantile functions respectively of the standard logistic dis-

tribution. When W is the standardized ¢, then W = 1/”7_2751,, where £, is the student’s distribution with v
degrees of freedom. The VQC function in this case is

_ K1 — H2 v o1
v - £ (M e Do)

where F,(.) and @, (.) are the distribution and quantile functions respectively of ¢,.

The simulations were carried out for sample sizes n; = ny = 25,50,75 and 100. The MISE was based on
5,000 replications. The results are reported in Table 1. In all cases, the proposed estimator offered a relative
reduction between 6% and 25% over the nonparametric estimator.

Table 1: Percent reduction in MISE of the proposed estimator relative to the Li et al. (1996) estimator

6= (/-//170.17 H2, UQ)T
Baseline distribution n; =ns (-0.5,1,3,1.5)" (5,1,2,2)7 (1,3.5,0,3)'

25 13.76 12.25 20.98
Gaussian 50 15.00 13.13 24.34
75 15.56 13.41 24.47
100 16.45 14.47 24.81
25 19.84 10.01 6.99
Logistic 50 20.23 10.05 9.32
75 18.91 12.97 6.07
100 21.52 13.26 7.86
v=>5 v=29 v=13
25 15.98 8.49 13.00
" 50 12.13 11.86 15.30
v 75 11.21 11.93 15.32
100 13.15 10.99 15.55

A study of the proposed estimator’s performance was conducted when the location and scale assumption
was violated. Let W indicate a generic base distribution such as standard normal, a standardized logistic, or a



standardized t,, where v is the degrees of freedom. Note that W has mean 0 and variance 1. Let Wy, W5 and
W3 be independent random variables each having the same distribution as W. We considered X7 = p; +01 W3
and Xy = po + 02Y, where Y = §|Wy| + (1 — 62)1/2W3. Here, the second sample is drawn from a skewed
distribution that matches the first sample distribution only when §, the skewness parameter, is 0. Note that
Fy(t) = P(Xy <t) = Fy((t—pu2)/02). Let Q1(p) be the quantile function of X;. Then Q1(p) = p1+01Qw, (p)-
After some calculations, the true VQC function is YT (p) = Fa(Q1(p)) = Fy ((Q1(p) — u2)/02), where

Fy(y) = /_O; Fw (%)J‘W(m)dm, y € RL.

When § is 0, X; and X, belong to an LS family. Substituting 6 = 0 on the right hand side of Eq. (3.1),
Fy (y) = Fw(y). In particular, when 6 =0, Y(p) = Fw (Q1(p)) = Fw (11 + 01Qw (p)). When ¢ is away from
0, the two samples are not from an LS family. We, however, continue to pool both samples and compute the
proposed estimator, which continues to outperform the nonparametric estimator significantly. The percent
reduction in MISE of the proposed estimator relative to the nonparametric estimator is shown in Figure 1.

(3.1)

Samle size 9 Samle size
a

30
30

25
1
25

20
20
L
20

ent MISE Reduction
5
Percent MISE Reduction
1
ent MISE Reduction
5

Perc
Perc

00 02 04 06 08 0.0 0.2 0.4 0.6 0.8 0.0 02 04 06 08

Skewness Skewness Skewness

(a) Normal 8 = (0,1,0,1)" (b) t4 8 = (=0.5,1,3,1.5)T (c) Logistic @ = (—0.5,1,3,1.5)7

Figure 1: Robustness study for some distributions

The empirical coverage probability (ECP) of the 95% pointwise confidence intervals for Y(p) is the propor-
tion of 1,000 intervals that include T(p). They were computed from the asymptotic normality of T(p). The
standard error of T(p) was estimated by B = 1,000 bootstrap samples. The ECPs are reported in Table 2.

Table 2: Empirical coverage probability of 95% confidence intervals for Y (p) for @ = (0,1,0,1)T

p

Baseline distribution n; =ns .35 .45 .50 .65 .75
25 920 .928 932 .930 .923

Gaussian 50 936 .947 944 942 938

75 951 .956 .959 .937 .947

100 954 954 942 .948 .940

25 936 .930 .939 .931 .920

Logistic 50 938 940 .944 938 .938

75 944 948 944 .940 .945

100 954 945 948 .944 950
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3.2 Numerical results for the censored case

The three scenarios that we considered for the uncensored case were replicated here. Failure times were
either normal or logistic or ¢,. The censoring was taken as C; = (u; + k1) + (07 + k2)W;, where W; were
independent standard normal, standardized logistic, or standardized t,. When W,; = Z; were standard normal,
k1 = 3 and ko = 3. When W, were standardized logistic, k1 = 2 and ky; = 2. When W, were standardized t,,
k1 = 3 and ko = 1. The percentage reduction in MISE relative to the nonparametric estimator are reported
in Table 3. The proposed estimator gave improved estimates for mild to moderate censoring rates.

Table 3: Percentage reduction in MISE of the proposed estimator relative to the Li et al. (1996) estimator

0= (M1701,H2,02)T
T

(0a17071)T (_2797573)T

Baseline distribution n; =ns (—1,1,2,2)

9 9 Y

25 53.71 88.87 36.50
50 48.83 82.96 38.29
Gaussian 75 41.51 76.44 35.96
100 31.69 70.29 33.22
Censoring Rate (10%, 21%)  (10%, 10%)  (41%, 28%)
25 51.01 74.75 50.90
Logistic 50 46.02 58.46 48.94
75 40.93 42.93 46.92
100 35.86 31.66 48.13
Censoring Rate (18%, 30%)  (18%, 18%)  (44%, 35%)
v=9 v=13 v=17
25 49.41 87.23 32.92
. 50 48.18 80.13 23.68
v 75 46.30 73.34 15.97
100 41.56 64.72 18.49
Censoring Rate (20%, 28%)  (19%, 19%)  (44%, 35%)

For the robustness study, similar to the uncensored case, we considered X; = p14+01 W7 and Xo = ps+09Y,
where Y = 6|Wy| + (1 — 62)"/2W5. In each scenario, the censoring distributions were like the ones specified in
the first study of this subsection, see above. The results are reported in Figure 2. As in the uncensored case,
here too the proposed estimator is robust to departures from the LS assumption.

sssssssss

100
100

‘ercent MISE Reduction
a
Percent MISE Reduction
0
Percent MISE Reduction
0

P

(a) Normal 8 = (0,1,0,1)" (b) t13 8 = (0,1,0,1)7 (¢) Logistic @ = (0,1,0,1)7

Figure 2: Censored robustness study of proposed estimator for different models

The ECPs of the 95% confidence intervals for T (p) are reported in Table 4. The failure and censoring time
distributions were as in the preceding simulation studies in this subsection.
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Table 4: Empirical coverage probability of 95% confidence intervals for Y(p) for 8 = (—0.5,1,3,1.5)"

4
Baseline distribution n; =ns .35 .45 .50 .65 .75
25 937 942 961 .954 .953
Gaussian 50 948 941 955 .964 .973
75 934 941 957 976 .956
100 937 942 958 .964 .964
25 921 926 .936  .935 .935
ts 50 923 933 928 .947 .938
75 930 941 937 .932 .938
100 943 946 .955 .949 .942

4 Conclusion

The intuitive idea that pooling the two standardized samples would increase precision turbocharged our
desire to develop the proposed semiparametric estimator. The numerical studies indicate that it should provide
a robust alternative to the touchstone nonparametric estimator even in cases when the data do not subscribe
to an LS framework. Although the idea is easily entertained, setting up the rigorous mathematical framework,
as attempted in this paper, required considerable effort. In particular, we were able to obtain desirable
convergence rates for various oscillation moduli by framing the standardization as a projection, which then
allowed us to exploit a result derived by Stute and Zhu (2005). The convergence rates were instrumental in
killing remainder terms. Using the functional delta method we derived an asymptotic representation for the
centered VQC function process, which we then tailored for the cases of no-censoring and censoring. In both
cases, however, the representations are unwieldy and the weak limits, although Gaussian, are not distribution
free. The pointwise confidence intervals for the VQC function returned ECPs that were close to the nominal
95%. The proposed estimator showed an attractive disposition of performing well under misspecifications.

The paper provides a basic building block that we believe would undergird the setting up of a host of allied
procedures such as simultaneous confidence bands (SCBs) for the VQC function under an LS framework, and
the provision of a powerful model diagnostic test for checking the adequacy of the LS assumption. Judged on
the basis of the numerical studies in this paper, these procedures are expected to offer significant improvements
over the existing ones. Work on these is in progress and will be reported as soon as they are completed.

A Appendix

A.1 Local oscillations of distribution and quantile functions estimators

Recall that 0 = (8, ,8, )", where 6; = (u;,04) " ,i = 1,2; and that v = (71 ,74)" is in a neighborhood of
0, where v, = (u},0)T. Recall that F, is the df of Wy, see Eq. (2.1). Note that F}, is the (notional) EDF of
W;J“ = (X5 —pi)/oi,j=1,...,n,1=1,2. We write Fg=Fand Fy=F.

For the local oscillations of the empirical process (s,7vy) — F.Y(s) — Fy(s) in a neighborhood of 8, let
H,(s,t) = Fy(s) — Fy(s) — F(t) + F(t) for 4 in a neighborhood of 8, and s € R,t € R satisfying (i)
|y =8| = O(n='/?) and (ii) |s —t| = O(n~'/2%®), where a < 1/2. In Lemma 3, we recast Lemma 4.2 of Stute
and Zhu (2005), which they noted is a modification of Theorem 37 of Pollard (1984).

Lemma 3. Under conditions C1 — C3 and conditions (i) and (ii) above, we have for uncensored data that
sup ]I:]L,(s,t)’ = op (nfl/z). (A1)
s,t,y

Proof Toprove Eq. (A.1),let n = (1/01, —py /01, 1/0h, —ps/o5) T andlet ng = (1/01, —p1 /01, 1/02, —pa/o2) T
The random variable W, defined by Eq. (2.1), can be expressed as the projection n U, where U is the vector
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(X16,6,X,(1—6),(1—¢))". Note that P(ng U < t) = F(t). Let s¢ be between s and o ' {(u — ;) + ols}.
Since Fy is the distribution function of W, we have that F.(s) = P(n'U < s). As in the proof of Lemma 1,

X1 — Xo —
R = (R Mer ot g <)
o / /I /7
_ F<M+015)p+F<M+%S)(1p)
o1 o1 02 02
* 1- ! *
= F(s)+ 2 {0 — ) + (0] = 00)s} F(s) + = Ay — ) + (0 = 02)s) f(53)

= F(s)+0(n'?).

Note that F(t) — F(s) = (t — s)f(t) where t lies between ¢ and s. Therefore F(t) — F(s) = O(n~1/2%),
Following the proof of Lemma 4.2 of Stute and Zhu (2005), the half spaces (—oo,xz] form a class with a
polynomial covering number. From the above calculations, the maximal measure of the sets included in the
class is

PngU <t)—P(n'U <s) = F(t)—Fy(s) = F(t) = F(s)+O0(n™"?) = On~'/**),
where @ = 1/¢, and reference to ¢ can be found in condition C1. The rest of the proof follows as in Stute
and Zhu (2005), giving the in-probability bound O(62ay,), where o2 = logn/(né?) and 62 = O(n=/2%*). It
follows that supy , ., ‘H7(87 t)‘ = Op (\/n*?’/%a log n), from which Eq. (A.1) follows. O
Remark For censored data, after some elementary calculations, ﬁ,y(s, t) can be expressed as a functional

of G (s,t) = Hy(s) — Hy(s) — H(t) + H(t) and G~ 1(s,t) = Hy1(s) — Hy1(s) — Hi(t) + Hy(t), where H,
is the distribution function of (Z; — p;)/o; and H.; is the subdistribution function of the (Z; — u)/o;

that are uncensored. By the methods of Lemma 3, it follows that sup,, . ‘G.,(s,t)‘ = op (n_l/Q) and
SUDg ¢ ~ ’@7,1(3,6‘ = op (n_l/ 2). Then, it can be shown that Lemma 3 applies for the censored case as

well. The details are cumbersome, so we omit them.

Lemma 4. Let Ay (p) = Q~(p) — Q+(p) — Q(p) + Q(p). Under conditions C1-C4, and (i) and (ii) above,

sup |2 (p)] = op(n~12). (A.2)
p€la,Bly

Proof For each p € [a, 8] and each v € T', consider the expression D~(p) [cf. Eq.(10), Lo and Singh, 1986]
D, (p) = Q'r(p) — Q~(p) + Q‘Y(F‘Y(Q’Y(p)» — Q~(Fy(Q~(p)))-

Let Ry(p) = Q(E(Q(p))) — QIF(Q(P))) — Q(F5(Q+(p))) + Qn (Fy (Qx (). Then A (p) = Ds(p) — Do(p) +
R (p). We will show that each is bounded above in absolute value by sup ,; . |H,(s,t)|. Following Lo and

Singh (1986), we can write D~ (p) = D.(,l)(p) + D.(,2) (p), where for each =,

D) = Qy(Fy(Qy() = Qv (Fy(Q () + Q(Ey(Q(0))) — @ (F4(Qy(1))),
Dﬁf)(P) = QW(FV(QW(p))) - Q'Y(P)'

All terms of D(vl) (p) are operated by the composition mappings Q.YOFL, or Q~oFy, which act on Q"/ (p) or Q~(p).
By Lemma 3 of Lo and Singh (1986) sup,¢(, g |Q~(p) — Q4 (p)] = O(n~'/2(logn)*/?) a.s. = o(n~'/?t*) as.,
where 0 < o < 1/2. Apply the mean value theorem to the two segments of D.(,l)(p) to obtain

Ey(@4(p) ~ Fy(Q4 (7)) s
f'y(Q'y(p*)) f'y(Q'y(p**) ’

1
DM (p) =



where p* lies between F,(Q~(p)) and F(Q~(p)), and p** lies between F(Q~(p)) and Fy(Q~(p)). We show
that we can replace the denominators of the two ratios in Eq. (A.3) by f+(Q(p*)) and f,(Q(p**)) respectively.
This is because the conditions on f, and its derivative, along with Remark 1 following Lemma 2 imply
that, for instance, the difference d = fy(Q~(p*)) — f+(Q(p*)) is O(n~/?) uniformly over ~ in the n=!/2
neighborhood of 8. Then we add and subtract F(-) and F(-) to the numerator of the ratio that occurs in the
remainder term. With K denoting a generic constant, it follows that R,,, the remainder term, is

R, < K {Sup L, (s,t)] + O (n—1/2(1og n)1/2)} x O(n=1/?), (A.4)
s,t,y

the upper bound free of . Likewise for the second ratio. Let K = inf,c[o, g],4 f(Q(p)). It follows that

1 .

K sup ‘F'y(x)_F'y(x)_p'y(y>+F"/(y)|+Rn
p€[e,B] z€[Q~(a),Q~(B)],|z—y|<cn—1/2+a

Op (Sup H:]L,(s,t)‘) )
s,t,y

a uniform bound for all . By similar techniques, we can show that sup,¢(, g [ (p)| = Op (supsﬁtq ‘]I:]I7 (s,1) D .

)]
o
il
)
2z
S
A

To handle D.(f)(p), we apply the mean value theorem and obtain

@y — Q) -
Dye = e (&.5)

where p* is bracketed between Q7 (p) and p. For the numerator of the ratio in Eq. (A.5), we use an inequality
that appears in the proof of Theorem 2 of Lo and Singh (1986), which is

E Q) =1l £ IB(@y(0) — Fy(Qy(p-) B
= [F5(Q4(p)) — F5( (p)) + F (Q'y( =) = F(Qy(p—))I- (A.6)
We replace the denominator of the ratio in Eq. (A.5) by f+(Q(p*)). From Eq. (A.5) and Eq. (A.6), therefore
@) L B Ou) - Fu(C Y (p—)) — Fo (O (p—
DY ()] < Q0 [y (@~ (P) = F5(Q~(P)) + F5(Qy(p=)) = F5 (@ (p—))| + R,

where R,, admits a rate like Eq. (A.4). It follows as before that sup,¢(, g |D.(,2)(p)| =0Op (sups’tﬁ ’]I:]L,(s, t)D
Therefore, sup,c(q,),+ |2~ (p)| = Op (x/n*3/2+0‘ log n), from which Eq. (A.2) follows. O

A.2 TUncensored case details

Recall that nq/n — Kk asn; — oo and ng — 00,k1 = kK =1 — Kg. Since W;; = (X;; — u;) /0, we have

1/2 ng
n _
n P — ) = <n) o X |y UZZWU
(3 J:1
= w5, Poix [0, PN Wi | +op(1). (A7)
j=1
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Because fi; — p; = Op(n; 1/2) and Y 17, W;; = op(n;), we have

) 1 & A 1 X
67 = — > (Xij— )= — Y (Xij = i+ — )
ng = ng =1
1 X
= o ;Z —20;(fu; /Li);ZWij + (mi — fui)”
i =1 )
= ol— Z W2 + op(n 1/2) (A.8)

Applying the delta method, it is easy to see from Eq. (A.8) that

1

L .2 71/2 o1 —-1/2
6, —0; = %, (67 — 0?) + op(n; = m Eﬁ 1) +op(n; *'7).
Then, it follows that
1/2/ . —1/2 0; —1/2 — 2
n3 (6, — o) = K, 5 | ™ E (Wi =1) | +op(1). (A.9)

Jj=1

By Corollary 21.5 of van der Vaart (1998), if F' is differentiable at Q(p) with positive derivative f(Q(p)), then

N _ 1 W”< —
W2 Q) - Q) = - PP S+ oe(1). (A.10)
i=1 j=1
Finally, it is easy to see that
2 n;
n1/2 (F(S)—F(S)) = n_l/QZZ{l{WijSS} _F(S)}+01P’(1) (All)
i=1j=1

We apply the representations given by Eq. (A.7) and Egs. (A.9)-(A.11) to the RHS of Eq. (2.12) to obtain
Eq. (2.15).
A.3 Censored case details

We first obtain representations for each of the centered quantities on the RHS of Eq. (2.12). From Major
and Rejtod (1988) and the functional delta method (Theorem II.8.1. of Andersen et al. (1993), it follows that

nt?(F(z) — F(z)) = S(z)n /2 i[l(l)(x) + op(1), (A.12)
=1
where
(1) W <x,6 =1) S I(W > y)dA(y)
7@ = —par=wy _/0 P(W >y) (A.13)

By Proposition I1.8.4 of Andersen et al. (1993), ¢(F) = Q(p) is (tangentially) compactly differentiable at
F with derivative dg(F) -h = —h(Q(p))/ f(Q(p)). Equivalently, n*2(Q(p) —Q(p)) is asymptotically equivalent
o (1 —p)de(F)-n'/?(F — F). Applying the operator d¢(F) on h = n'/?(F — F), Eq. (A.12) implies that

n2(Qp) — Qp)) = f(_ ‘1/221(1 ) + 0s(1). (A.14)
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For i = 1,2, let S’z() be the KM estimator of S;(x) = P(X; > x) and let F,=1-8;. Let vy; = inf{u :
H;(u) =1} < 0o, where H; is the distribution function of Z;;,l =1,...,n;. Let Ay, be the set of all atoms of
H;, which may possibly be empty. For any measurable function ¢ with [ ¢ dF; < oo, with probability 1 and in
the mean, [ ¢ dF; converges to [ ¢ dF;, where Fy(x) = Fi(z)I(z < v;)+{F;(v;—)+1(vi € Ag,)F(v))}I(z > v;)
(Stute and Wang, 1993). It will be assumed that v; < oo and that v; is not an atom of F; (Stute and Wang,
1993; Stute, 1995). Then, F, = F;. When @(z) is 2 or 2%, one obtains the estimators of the first two moments.

Let Tj; < ... < Ty, be the distinct uncensored Z;;’s. Let dy and r; be the number of observed failures at

T;; and the number of Z” that are greater than or equal to T;;. Note that AS‘( ) = S’Z(Tll) — S’-(T(l 1) =
fé'i(Ti(l 1y)dit/ri, and S; (Ti0) = 1. The KM integral estimates of p; and t;, the second moment of F;, are

= — Z TilASi (Til)§ 1&1* = - Z TflASA’Z (Tzl) (A15)
Let Cg, (t) = Di(Ag,;,1 — H;), where Ag, is the CHF associated with G;. Stute (1995) proved that

/@(x)dﬁi(x) = niz {(0(Zij)Bio(Zi3)6s5 + Bir (Zij) (1 — 6i) — Bia(Zij)} + 0p(n; /%), (A.16)

where B;p,(z),m =0,1,2, are

Bio(z) = %@-(as);
Bale) = g [ PR W)

T dAG ) Slw = ~ i w w lw
Brala / / oplw)dR () = /  Coule nw)plw)dR(w)

The expectations of the second and third summands in Eq. (A.16) cancel out (Stute, 1995). The first summand
in Eq. (A.16) has expectation equal to [ pdF;. When ¢(z) = , [ pdF; = ji;. We obtain from Eq. (A.16) that

02— ) = ok ‘1/221” + op(1 (A.17)

where, replacing ¢(w) with w in the definition of 8;;(x) and B;2(x) above, we obtain the influence function

Ii(f) = {Zz‘jﬂio(Zij)Jz’j_Mz’}+1_Hi(Zij)/ wdF;(w / Ca,(Zij Nw)w dF;(w).  (A.18)

Zi;

Note that E(Iff)) =0for j =1,...,n; and ¢ = 1,2. The estimate of o; will be through the first two KM
integral estimates of y; and ;. Accordingly, if we let ¢(w) = w? then [ p(w)dF; = v;, and from Eq. (A.16),

W2 — ) = kP _1/221” + op(1), (A.19)

where, replacing p(w) with w? in the definition of 8;1(x) and B;2(x) above, we obtain the influence function

1_H(Z])/ w? dF;(w / Ca,(Zij Nw)w? dFy(w). (A.20)

Z;

Ii(;)) = {Z}Bi0(Zij)8i; — i} +
Note that E(I (3))—Oforj:1,...,ni and i =1,2.
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Applying the delta method yields

W) = gl (67— o) +or()
1 ~
= 25 n/? {(%‘ — i) = 2 (f1; — Ni)} +op(1). (A-21)

Eq. (A.21) indicates that, for n'/?(fi; — 1), the scaling factor computed from Eq. (2.12) will be modified to

2 e m L, o) scw)

01 g2 g1 02 g1

For n'/2(fi; — 2), the modified scaling factor is

ofe e m Lz, )] e

g1 g9 g9 ' g9 g1
For n'/2(¢y — 1b1), the modified scaling factor is

1 1 — H2
%0109 {p+ Q(p)} f(C(p)).

01
For n1/2(1/;2 — 1b2), the modified scaling factor is

01

ot o) o).

T 5.3
20’2 1

Apply the representations in Eqgs. (A.12), (A.14), (A.17), and (A.19) to the RHS of Eq. (2.12) to get Eq. (2.18).
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